du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.ORCID-id: 0000-0002-1548-5077
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Parkinson’s disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.

Ort, förlag, år, upplaga, sidor
IEEE, 2019.
Nationell ämneskategori
Sjukgymnastik Annan medicinteknik
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-29542DOI: 10.1109/JBHI.2019.2898332OAI: oai:DiVA.org:du-29542DiVA, id: diva2:1290650
Tillgänglig från: 2019-02-21 Skapad: 2019-02-21 Senast uppdaterad: 2019-06-05Bibliografiskt granskad

Open Access i DiVA

fulltext(619 kB)58 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 619 kBChecksumma SHA-512
ce55c472380290bc5d45baf039f569bded7c19c63c8b7fd1d8fa0a69da917b7553a64d9af0b37d80b05d7f46689ad97a3b2e6b4bd325bd6ce60147e8f960618d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Aghanavesi, Somayeh

Sök vidare i DiVA

Av författaren/redaktören
Aghanavesi, Somayeh
Av organisationen
Mikrodataanalys
I samma tidskrift
IEEE journal of biomedical and health informatics
SjukgymnastikAnnan medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 58 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 571 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf