du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Treatment response index from a multi-modal sensor fusion platform for assessment of motor states in Parkinson's disease
Dalarna University, School of Technology and Business Studies, Microdata Analysis.ORCID iD: 0000-0002-1548-5077
Show others and affiliations
2019 (English)Manuscript (preprint) (Other academic)
Abstract [en]

The aim of this paper is to develop and evaluate a multi-sensor data fusion platform for quantifying Parkinson’s disease (PD) motor states. More specifically, the aim is to evaluate the clinimetric properties (validity, reliability, and responsiveness to treatment) of the method, using data from motion sensors during lower- and upper-limb tests.

Methods: Nineteen PD patients and 22 healthy controls were recruited in a single center study. Subjects performed standardized motor tasks of Unified PD Rating Scale (UPDRS), including leg agility, hand rotation, and walking after wearing motion sensors on ankles and wrists. PD patients received a single levodopa dose before and at follow-up time points after the dose administration. Patients were video recorded and their motor symptoms were rated by three movement disorder experts. Experts rated each and every test occasions based on the six items of UPDRS-III (motor section), the treatment response scale (TRS) and the dyskinesia score. Spatiotemporal features were extracted from the sensor data. Features from lower limbs and upper limbs were fused. Feature selection methods of stepwise regression (SR), Lasso regression and principle component analysis (PCA) were used to select the most important features. Different machine learning methods of linear regression (LR), decision trees, and support vector machines were examined and their clinimetric properties were assessed.

Results: Treatment response index from multimodal motion sensors (TRIMMS) scores obtained from the most valid method of LR when using data from all tests. Features were selected by SR, and this method resulted in r=0.95 to TRS. The test-retest reliability of TRIMMS was good with intra-class correlation coefficient of 0.82. Responsiveness of the TRIMMS to levodopa treatment was similar to the responsiveness of TRS.

Conclusions: The results from this study indicate that fusing motion sensors data gathered during standardized motor tasks leads to valid, reliable and sensitive objective measurements of PD motor symptoms. These measurements could be further utilized in studies for individualized optimization of treatments in PD.

Place, publisher, year, edition, pages
2019.
National Category
Medical Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
URN: urn:nbn:se:du-29546OAI: oai:DiVA.org:du-29546DiVA, id: diva2:1290688
Available from: 2019-02-21 Created: 2019-02-21 Last updated: 2019-06-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Aghanavesi, Somayeh

Search in DiVA

By author/editor
Aghanavesi, Somayeh
By organisation
Microdata Analysis
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 337 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf