Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Life cycle assessment of a wooden single-family house in Sweden
Högskolan Dalarna, Akademin Industri och samhälle, Byggteknik.
Högskolan Dalarna, Akademin Industri och samhälle, Byggteknik.ORCID-id: 0000-0002-9943-9878
Högskolan Dalarna, Akademin Industri och samhälle, Energiteknik.ORCID-id: 0000-0002-2369-0169
Vise andre og tillknytning
2019 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 251, s. 113-253, artikkel-id 113253Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To understand the reasons behind the large environmental impact from buildings the whole life cycle needs to be considered. Therefore, this study evaluates the carbon dioxide emissions in all stages of a single-family house in Sweden from the production of building materials, followed by construction and user stages until the end-of-life of the building in a life cycle assessment (LCA). The methodology applied is attributional life cycle assessment (LCA) based on ‘One Click LCA’ tool and a calculated life span of 100 years. Global warming potential (GWP) and primary energy (PE) are calculated by using specific data from the case study, furthermore the data regarding building materials are based on Environmental Product Declarations (EPDs). The results show that the selection of wood-based materials has a significantly lower impact on the carbon dioxide emissions in comparison with non-wood based materials. The total emissions for this single-family house in Sweden are 6 kg CO 2 e/m 2 /year. The production stage of building materials, including building systems and installations represent 30% of the total carbon dioxide equivalent emissions, while the maintenance and replacement part represents 37%. However, energy use during the in-use stage of the house recorded lower environmental impact (21%) due to the Swedish electricity mix that is mostly based on energy sources with low carbon dioxide emissions. The water consumption, construction and the end-of-life stages have shown minor contribution to the buildings total greenhouse gas (GHG) emissions (12%). The primary energy indicator shows the largest share in the operational phase of the house.

sted, utgiver, år, opplag, sider
2019. Vol. 251, s. 113-253, artikkel-id 113253
Emneord [en]
Carbon dioxide equivalent emission, Environmental product declaration, Global warming potential, Life cycle assessment, Primary energy, Single-family house
HSV kategori
Forskningsprogram
Forskningsprofiler 2009-2020, Energi och samhällsbyggnad
Identifikatorer
URN: urn:nbn:se:du-30118DOI: 10.1016/j.apenergy.2019.05.056ISI: 000497966300013Scopus ID: 2-s2.0-85065788114OAI: oai:DiVA.org:du-30118DiVA, id: diva2:1319322
Tilgjengelig fra: 2019-05-31 Laget: 2019-05-31 Sist oppdatert: 2024-06-17bibliografisk kontrollert
Inngår i avhandling
1. Life cycle assessment and life cycle cost analysis of a single-family house
Åpne denne publikasjonen i ny fane eller vindu >>Life cycle assessment and life cycle cost analysis of a single-family house
2021 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The building industry is responsible for 35% of final energy use and 38% of CO2 emissions at a global level. The European Union aims to reduce CO2 emissions in the building industry by up to 90% by the year 2050. Therefore, it is important to consider the environmental impacts buildings have. The purpose of this thesis was to investigate the environmental impacts and costs of a single-family house in Sweden. In the study, the life cycle assessment (LCA) and the life cycle cost (LCC) methods have been used by following the “cradle to grave” life cycle perspective. 

This study shows a significant reduction of global warming potential (GWP), primary energy (PE) use and costs when the lifespan of the house is shifted from 50 to 100 years. The findings illustrate a total decrease in LCA outcome, of GWP to 27% and PE to 18%. Considering the total LCC outcome, when the discount rate increases from 3% to 5% and then 7%, the total costs decrease significantly (60%, 85% to 95%). The embodied carbon, PE use and costs from the production stage/construction stage are significantly reduced, while the maintenance/replacement stage displays the opposite trend. Operational energy use, water consumption and end-of-life, however, remain largely unchanged. Furthermore, the findings emphasize the importance of using wood-based building materials due to its lower carbon-intensive manufacturing process compared to non-wood choices.  

The results of the LCA and LCC were systematically studied and are presented visually. Low carbon and cost-effective materials and installations have to be identified in the early stage of a building design so that the appropriate investment choices can be made that will reduce a building’s total environmental and economic impact in the long run. Findings from this thesis provide a greater understanding of the environmental and economic impacts that are relevant for decision-makers when building single-family houses.

Abstract [sv]

Byggbranschen svarar för 35% av den slutliga energianvändningen och 38 % av koldioxidutsläppen på global nivå. Europeiska unionen strävar efter att minska koldioxidutsläppen i byggnadsindustrin med upp till 90% fram till 2050. Därför är det viktigt att beakta byggnaders miljöpåverkan. Syftet med denna avhandling var att undersöka miljöpåverkan och kostnader för ett enfamiljshus i Sverige. I studien har livscykelbedömningen (LCA) och livscykelkostnadsmetoderna (LCC) använts genom att tillämpa livscykelperspektivet ”vagga till grav”.

Studien visar en stor minskning av global uppvärmningspotential (GWP), användning av primärenergi (PE) och kostnader vid växling från 50 till 100 års husets livslängd. Resultaten visar en årlig minskning med 27% för utsläpp av växthusgaser och med 18% för användningen av primärenergi. Med tanke på det totala LCC-utfallet, när diskonteringsräntan ökar från 3%, 5% till 7%, minskar de totala kostnaderna avsevärt (60%, 85% till 95%). Det noteras att klimatavtrycket, primärenergianvändningen och kostnaderna från produktionssteget/konstruktionssteget minskar avsevärt, medan underhålls- / utbytessteget visar den motsatta trenden när man byter från 50 till 100 års livslängd. Den operativa energianvändningen, vattenförbrukningen och avfallshanteringen är fortfarande nästan samma när man ändrar livslängden. Vidare betonar resultaten vikten av att använda träbaserade byggmaterial på grund av lägre klimatpåverkan från tillverkningsprocessen jämfört med alternativen.

LCA- och LCC-resultaten studerades systematiskt och redovisades visuellt. De koldioxidsnåla och kostnadseffektiva materialen och installationerna måste identifieras i ett tidigt skede av en byggnadskonstruktion genom att välja lämpliga investeringsval som kommer att minska de totala miljö och ekonomiska effekterna på lång sikt. Resultaten från denna avhandling ger ökad förståelse för miljömässiga och ekonomiska konsekvenser som är relevanta för beslutsfattare vid byggnation av ett enfamiljshus.

sted, utgiver, år, opplag, sider
Gävle: Gävle University Press, 2021. s. 30
Emneord
Building, carbon-dioxide equivalent emissions, global warming potential, primary energy use, life cycle assessment, life cycle cost, Byggnad, koldioxidekvivalenta utsläpp, global uppvärmningspotential, pri-märenergianvändning, livscykelbedömning, livscykelkostnad
HSV kategori
Identifikatorer
urn:nbn:se:du-45939 (URN)978-91-88145-77-2 (ISBN)
Presentation
2021-09-02, Room 322, Röda vägen 3, Borlänge, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-05-02 Laget: 2023-05-02 Sist oppdatert: 2023-05-02bibliografisk kontrollert
2. Whole Life Carbon Assessment and Life Cycle Cost Analysis of a Single-family Building
Åpne denne publikasjonen i ny fane eller vindu >>Whole Life Carbon Assessment and Life Cycle Cost Analysis of a Single-family Building
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The building sector is responsible for 34% of final energy consumption and contributes to 37% of global CO2 emissions. In alignment with sustainability goals, the European Union has set a target to reduce CO2 emissions in the building sector by up to 90% by 2050. Consequently, there is a great need to examine the climate impact of buildings and adopt a comprehensive perspective using a whole life carbon assessment. The aim of the thesis was to examine greenhouse gas (GHG) emissions and costs throughout all life cycle stages, applying a whole life carbon assessment and life cycle cost analysis for a single-family building situated in a Nordic climate. Additionally, both positive (released) and negative GHG emissions were explored and documented, encompassing operational and embodied impacts. In the thesis, the life cycle assessment and the life cycle cost methods have been applied by following the “cradle-to-grave” life cycle perspective. The study includes an analysis of the reference building design and comparisons with improved building design. 

The thesis findings highlight a substantial decrease in released GHG emissions with 23% reduction for the analyzed improved building design showing 5.2 kg CO2e/m2/y50 compared to the reference building design showing 6.7 kg CO2e/m2/y50. Moreover, incorporating biogenic carbon and the D module into the cradle-to-grave approach shows the lowest total GHG emissions, manifesting as negative values, -0.7 kg CO2e/m2/y50 for the improved building design. Embodied impact accounts for 79% and 72% of the total impact, while operational impact accounts for 21% and 28% for the reference and improved building designs. When analyzing all building materials, it is shown that an increased share of wooden building materials in the improved building design results in decreased released (positive) GHG emissions and increased negative GHG emissions. The results underscore the significance of using wood-based building materials due to their manufacturing process having lower GHG emissions compared to non-wood solutions. Considering the reference building design, when analyzing the building energy systems, it should be noted that the embodied GHG emissions from the production phase of solar PV panels are considerably higher when compared to emissions from the ventilation system and heat pump. To decrease the embodied GHG emissions during the production phase of solar PV panels, the manufacturing process should be done in countries with a larger share of renewable energy sources in the electricity grid. Moreover, recognizing building materials with low GHG emissions that are economically profitable during the early phases of building design and construction is essential for reducing long-term environmental and economic consequences. Additionally, considering the utilization of reusable building products over new ones could be seen as a winning strategy for mitigating the climate impact in the building sector and decreasing the use of natural resources and waste. 

Considering the economic impact, it can be noted that the construction costs are greater than operational costs and end-of-life costs comparing all life cycle stages. Approximately 50% of the construction costs are labor costs, followed by investment costs for building materials, installations, and pre-construction costs. Analyzing the building products’ costs, it is important to note that selecting cross-laminated timber (CLT) for a foundation could lead to higher investment costs compared to concrete slabs. 

In conclusion, the result of the thesis encompasses a whole life carbon assessment in buildings. It underscores the importance of revealing all carbon flows associated with single-family buildings. Finally, the thesis outlines the advantages of utilizing wood-based materials and reusable building products for building owners, contractors, designers, architects, consultants, and other decision-makers. It emphasizes the importance of considering both the environmental and economic aspects of buildings to attain a comprehensive understanding.

Abstract [sv]

Byggsektorn är ansvarig för 34% av slutlig energiförbrukning och bidrar till 37% av de globala CO2-utsläppen. I linje med hållbarhetsmålen har Europeiska unionen satt som mål att minska CO2-utsläppen inom byggsektorn med upp till 90% till år 2050. Följaktligen finns det ett stort behov av att undersöka byggnaders klimatpåverkan och anta ett helhetsperspektiv genom att använda livscykelanalys av koldioxid. Syftet med avhandlingen var att undersöka koldioxidutsläpp (växthusgasutsläpp) och kostnader under alla livscykelstadier genom att tillämpa en hel livscykelanalys och livscykelkostnadsanalys för ett enfamiljshus i ett nordiskt klimat. Dessutom undersöktes och dokumenterades både positiva (utsläppta) och negativa växthusgasutsläpp, som innefattade påverkan från både produktion och användning. I avhandlingen har metoderna livscykelanalys och livscykelkostnadsanalys använts med ett ”vagga-till-grav” livscykelperspektiv. Studien inkluderar en analys av referensbyggnadens utformning samt jämförelser med förbättrade utformningar av byggnaden.

Avhandlingens resultat lyfter fram att växthusgasutsläppen minskar med 23% för den analyserade förbättrade utformningen av byggnaden, som ger 5.2 kg CO2e/m2/y50 jämfört med referensbyggnadens utformning som ger 6.7 kg CO2e/m2/y50. Dessutom, när biogen koldioxid och D-modulen inkluderas i livscykelanalysen från vaggan till graven visar sig de lägsta totala (växthusgas)utsläppen, som innebär negativa värden, -0.7 kg CO2e/m2/y50 för den förbättrade utformningen av byggnaden. Påverkan från produktion av material och produkter står för 79% och 72% av den totala påverkan (på koldioxidutsläppen), medan påverkan från driften står för 21% och 28% för referens- och förbättrad byggnadsdesign. När alla byggnadsmaterial analyseras visar det sig att en ökad andel av byggnadsmaterial av trä i den förbättrade utformningen av byggnaden resulterar i en minskning av utsläppta (positiva) växthusgasutsläpp och ökade negativa växthusgasutsläpp. Resultaten understryker vikten av att använda trä som byggmaterial på grund av de lägre koldioxidutsläppen från tillverkningsprocessen jämfört med icke-träbaserade lösningar. Vid analys av byggnadens energisystem bör det noteras att de inbäddade växthusgasutsläppen från produktionsfasen av solcellspaneler är betydligt högre jämfört med utsläpp från ventilationssystemet och värmepumpen för referensbyggnadens utformning. För att minska de inbäddade växthusgasutsläppen under produktionsfasen av solcellspaneler bör tillverkningsprocessen ske i länder med en större andel förnybara energiproduktion i elnätet. Dessutom är det avgörande att i tidiga skeden av byggprojekt och byggproduktion uppmärksamma byggmaterial med låg klimatpåverkan som är ekonomiskt lönsamma för att minska de långsiktiga konsekvenserna på miljö och ekonomi. Dessutom kan användningen av återanvändbara byggprodukter jämfört med nya ses som en framgångsrik strategi för att minska klimatpåverkan inom byggsektorn och minska användningen av naturresurser och avfall.

Vid bedömning av ekonomisk påverkan kan det noteras att vid jämförelse av alla livscykelfaser byggkostnaderna större än driftskostnader och kostnader vid slutet av livscykeln. Ungefär 50% av byggkostnaderna är arbetskraftskostnader, följt av investeringskostnader för byggmaterial, installationer och förberedande byggkostnader. Vid analys av byggprodukternas kostnader är det viktigt att notera att valet av korslaminerat trä för en grund (bottenbjälklag) kan leda till högre kostnader jämfört med användning av betong i bjälklaget.

Sammanfattningsvis omfattar avhandlingens resultat en livscykelanalys av koldioxidutsläpp från byggnader. Den betonar vikten av att avslöja alla flöden av koldioxid som är förknippade med byggnader. Slutligen beskriver avhandlingen fördelarna med att använda träbaserade material och återanvändbara byggprodukter för fastighetsägare, entreprenörer, designers, arkitekter, konsulter och andra beslutsfattare. Den betonar betydelsen av att ta hänsyn till såväl miljöaspekter som ekonomiska aspekter av byggnader för att uppnå en omfattande förståelse.

sted, utgiver, år, opplag, sider
Gävle: Gävle University Press, 2024. s. 59
Serie
Doctoral thesis ; 46
Emneord
Building, greenhouse gas emissions, global warming potential, building energy systems, life cycle assessment, life cycle cost, reuse, wood, Byggnad, utsläpp av växthusgaser, global uppvärmningspotential, energisystem, livscykelanalys, livscykelkostnad, återanvändning, trä
HSV kategori
Identifikatorer
urn:nbn:se:du-48755 (URN)978-91-89593-32-9 (ISBN)978-91-89593-33-6 (ISBN)
Disputas
2024-06-03, 12:108, Kungsbäcksvägen 47, Gävle, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-06-17 Laget: 2024-06-17 Sist oppdatert: 2024-06-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Petrovic, BojanaMyhren, Jonn AreZhang, Xingxing

Søk i DiVA

Av forfatter/redaktør
Petrovic, BojanaMyhren, Jonn AreZhang, Xingxing
Av organisasjonen
I samme tidsskrift
Applied Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 389 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf