du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of an adaptation table to enhance the accuracy of the predicted mean vote model
Dalarna University, School of Technology and Business Studies, Energy Technology.ORCID iD: 0000-0002-2369-0169
Show others and affiliations
2020 (English)In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 168, article id 106504Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2020. Vol. 168, article id 106504
National Category
Building Technologies
Research subject
Energy and Built Environments
Identifiers
URN: urn:nbn:se:du-31070DOI: 10.1016/j.buildenv.2019.106504Scopus ID: 2-s2.0-85074601389OAI: oai:DiVA.org:du-31070DiVA, id: diva2:1367152
Available from: 2019-11-01 Created: 2019-11-01 Last updated: 2019-11-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Zhang, XingxingHan, Mengjie

Search in DiVA

By author/editor
Zhang, XingxingHan, Mengjie
By organisation
Energy TechnologyMicrodata Analysis
In the same journal
Building and Environment
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf