du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensor-based knowledge- and data-driven methods: A case of Parkinson’s disease motor symptoms quantification
Dalarna University, School of Technology and Business Studies, Microdata Analysis.ORCID iD: 0000-0002-1548-5077
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Description
Abstract [en]

The overall aim of this thesis was to develop and evaluate new knowledge- and data-driven methods for supporting treatment and providing information for better assessment of Parkinson’s disease (PD).

PD is complex and progressive. There is a large amount of inter- and intravariability in motor symptoms of patients with PD (PwPD). The current evaluation of motor symptoms that are done at clinics by using clinical rating scales is limited and provides only part of the health status of PwPD. An accurate and clinically approved assessment of PD is required using frequent evaluation of symptoms.

To investigate the problem areas, the thesis adopted the microdata analysis approach including the stages of data collection, data processing, data analysis, and data interpretation. Sensor systems including smartphone and tri-axial motion sensors were used to collect data from advanced PwPD experimenting with repeated tests during a day. The experiments were rated by clinical experts. The data from sensors and the clinical evaluations were processed and used in subsequent analysis.

The first three papers in this thesis report the results from the investigation, verification, and development of knowledge- and data-driven methods for quantifying the dexterity in PD. The smartphone-based data collected from spiral drawing and alternate tapping tests were used for the analysis. The results from the development of a smartphone-based data-driven method can be used for measuring treatment-related changes in PwPD. Results from investigation and verification of an approximate entropy-based method showed good responsiveness and test-retest reliability indicating that this method is useful in measuring upper limb temporal irregularity.

The next two papers, report the results from the investigation and development of motion sensor-based knowledge- and data-driven methods for quantification of the motor states in PD. The motion data were collected from experiments such as leg agility, walking, and rapid alternating movements of hands. High convergence validity resulted from using motion sensors during leg agility tests. The results of the fusion of sensor data gathered during multiple motor tests were promising and led to valid, reliable and responsive objective measures of PD motor symptoms.

Results in the last paper investigating the feasibility of using the Dynamic Time-Warping method for assessment of PD motor states showed it is feasible to use this method for extracting features to be used in automatic scoring of PD motor states.

The findings from the knowledge- and data-driven methodology in this thesis can be used in the development of systems for follow up of the effects of treatment and individualized treatments in PD.

Place, publisher, year, edition, pages
Borlänge: Dalarna University, 2020.
Series
Dalarna Doctoral Dissertations ; 12
Keywords [en]
Parkinson’s disease, motion sensors, motor symptoms, smartphone, microdata, multivariate analysis, data-driven, knowledge-driven, support vector machine stepwise regression, predictive models
National Category
Computer Systems Computer Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
URN: urn:nbn:se:du-32065ISBN: 978-91-88679-00-0 (print)OAI: oai:DiVA.org:du-32065DiVA, id: diva2:1396887
Public defence
2020-05-08, Clas Ohlson, Borlänge, 13:00 (English)
Opponent
Supervisors
Available from: 2020-04-15 Created: 2020-02-26 Last updated: 2020-04-15Bibliographically approved
List of papers
1. A smartphone-based system to quantify dexterity in Parkinson's disease patients
Open this publication in new window or tab >>A smartphone-based system to quantify dexterity in Parkinson's disease patients
Show others...
2017 (English)In: Informatics in Medicine Unlocked, ISSN 2352-9148, Vol. 9, p. 11-17Article in journal (Refereed) Published
Abstract [en]

Objectives: The aim of this paper is to investigate whether a smartphone-based system can be used to quantify dexterity in Parkinson’s disease (PD). More specifically, the aim was to develop data-driven methods to quantify and characterize dexterity in PD. Methods: Nineteen advanced PD patients and 22 healthy controls participated in a clinical trial in Uppsala, Sweden. The subjects were asked to perform tapping and spiral drawing tests using a smartphone. Patients performed the tests before, and at pre-specified time points after they received 150% of their usual levodopa morning dose. Patients were video recorded and their motor symptoms were assessed by three movement disorder specialists using three Unified PD Rating Scale (UPDRS) motor items from part III, the dyskinesia scoring and the treatment response scale (TRS). The raw tapping and spiral data were processed and analyzed with time series analysis techniques to extract 37 spatiotemporal features. For each of the five scales, separate machine learning models were built and tested by using principal components of the features as predictors and mean ratings of the three specialists as target variables. Results: There were weak to moderate correlations between smartphone-based scores and mean ratings of UPDRS item #23 (0.52; finger tapping), UPDRS #25 (0.47; rapid alternating movements of hands), UPDRS #31 (0.57; body bradykinesia and hypokinesia), sum of the three UPDRS items (0.46), dyskinesia (0.64), and TRS (0.59). When assessing the test-retest reliability of the scores it was found that, in general, the clinical scores had better test-retest reliability than the smartphone-based scores. Only the smartphone-based predicted scores on the TRS and dyskinesia scales had good repeatability with intra-class correlation coefficients of 0.51 and 0.84, respectively. Clinician-based scores had higher effect sizes than smartphone-based scores indicating a better responsiveness in detecting changes in relation to treatment interventions. However, the first principal component of the 37 features was able to capture changes throughout the levodopa cycle and had trends similar to the clinical TRS and dyskinesia scales. Smartphone-based scores differed significantly between patients and healthy controls. Conclusions: Quantifying PD motor symptoms via instrumented, dexterity tests employed in a smartphone is feasible and data from such tests can also be used for measuring treatment-related changes in patients.

Keywords
Parkinson's disease; motor assessment; spiral tests; tapping tests; smartphone; dyskinesia; bradykinesia; objective measures; telemedicine
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-25034 (URN)10.1016/j.imu.2017.05.005 (DOI)
Funder
Knowledge Foundation
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2020-02-26Bibliographically approved
2. A method for measuring Parkinson's disease related temporal irregularity in spiral drawings
Open this publication in new window or tab >>A method for measuring Parkinson's disease related temporal irregularity in spiral drawings
2016 (English)In: 2016 IEEE International Conference on Biomedical and Health Informatics, 2016, p. 410-413Conference paper, Published paper (Refereed)
Abstract [en]

The objective of this paper was to develop and evaluate clinimetric properties of a method for measuring Parkinson's disease (PD)-related temporal irregularities using digital spiral analysis. In total, 108 (98 patients in different stages of PD and 10 healthy elderly subjects) performed repeated spiral drawing tasks in their home environments using a touch screen device. A score was developed for representing the amount of temporal irregularity during spiral drawing tasks, using Approximate Entropy (ApEn) technique. In addition, two previously published spiral scoring methods were adapted and their scores were analyzed. The mean temporal irregularity score differed significantly between healthy elderly subjects and advanced PD patients (P<0.005). The ApEn-based method had a better responsiveness and test-retest reliability when compared to the other two methods. In contrast to the other methods, the mean scores of the ApEn-based method improved significantly during a 3 year clinical study, indicating a possible impact of pathological basal ganglia oscillations in temporal control during spiral drawing tasks. In conclusion, the ApEn-based method could be used for differentiating between patients in different stages of PD and healthy subjects. The responsiveness and test-retest reliability were good for the ApEn-based method indicating that this method is useful for measuring upper limb temporal irregularity at a micro-level.

National Category
Computer Systems Signal Processing
Research subject
Complex Systems – Microdata Analysis, FLOAT - Flexible Levodopa Optimizing Assistive Technology
Identifiers
urn:nbn:se:du-21183 (URN)10.1109/BHI.2016.7455921 (DOI)000381398000102 ()978-1-5090-2455-1 (ISBN)
Conference
Biomedical and Health Informatics 2016, Las Vegas, 24-27 February
Available from: 2016-03-01 Created: 2016-03-01 Last updated: 2020-02-26Bibliographically approved
3. Verification of a method for measuring Parkinson’s disease related temporal irregularity in spiral drawings
Open this publication in new window or tab >>Verification of a method for measuring Parkinson’s disease related temporal irregularity in spiral drawings
Show others...
2017 (English)In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, no 10, article id 2341Article in journal (Refereed) Published
Abstract [en]

Parkinson's disease (PD) is a progressive movement disorder caused by the death of dopamine-producing cells in the midbrain. There is a need for frequent symptom assessment, since the treatment needs to be individualized as the disease progresses. The aim of this paper was to verify and further investigate the clinimetric properties of an entropy-based method for measuring PD-related upper limb temporal irregularities during spiral drawing tasks. More specifically, properties of a temporal irregularity score (TIS) for patients at different stages of PD, and medication time points were investigated. Nineteen PD patients and 22 healthy controls performed repeated spiral drawing tasks on a smartphone. Patients performed the tests before a single levodopa dose and at specific time intervals after the dose was given. Three movement disorder specialists rated videos of the patients based on the unified PD rating scale (UPDRS) and the Dyskinesia scale. Differences in mean TIS between the groups of patients and healthy subjects were assessed. Test-retest reliability of the TIS was measured. The ability of TIS to detect changes from baseline (before medication) to later time points was investigated. Correlations between TIS and clinical rating scores were assessed. The mean TIS was significantly different between healthy subjects and patients in advanced groups (p-value = 0.02). Test-retest reliability of TIS was good with Intra-class Correlation Coefficient of 0.81. When assessing changes in relation to treatment, TIS contained some information to capture changes from Off to On and wearing off effects. However, the correlations between TIS and clinical scores (UPDRS and Dyskinesia) were weak. TIS was able to differentiate spiral drawings drawn by patients in an advanced stage from those drawn by healthy subjects, and TIS had good test-retest reliability. TIS was somewhat responsive to single-dose levodopa treatment. Since TIS is an upper limb high-frequency-based measure, it cannot be detected during clinical assessment.

Keywords
Parkinson's disease; smartphone; spiral tests; temporal irregularity; timing variability; motor assessment; approximate entropy; complexity
National Category
Other Medical Engineering Probability Theory and Statistics
Research subject
Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-29318 (URN)10.3390/s17102341 (DOI)000414931500183 ()29027941 (PubMedID)2-s2.0-85032855199 (Scopus ID)
Available from: 2019-01-21 Created: 2019-01-21 Last updated: 2020-05-12Bibliographically approved
4. Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge
Open this publication in new window or tab >>Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge
Show others...
2020 (English)In: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, Vol. 24, no 1, p. 111-119, article id 8637809Article in journal (Refereed) Published
Abstract [en]

Parkinson’s disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.

Place, publisher, year, edition, pages
IEEE, 2020
National Category
Physiotherapy Other Medical Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-29542 (URN)10.1109/JBHI.2019.2898332 (DOI)000506642000012 ()2-s2.0-85077669455 (Scopus ID)
Available from: 2019-02-21 Created: 2019-02-21 Last updated: 2020-03-18Bibliographically approved
5. A multiple motion sensors index for motor state quantification in Parkinson's disease
Open this publication in new window or tab >>A multiple motion sensors index for motor state quantification in Parkinson's disease
Show others...
2020 (English)In: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 189, article id 105309Article in journal (Refereed) Published
Abstract [en]

AIM: To construct a Treatment Response Index from Multiple Sensors (TRIMS) for quantification of motor state in patients with Parkinson's disease (PD) during a single levodopa dose. Another aim was to compare TRIMS to sensor indexes derived from individual motor tasks.

METHOD: Nineteen PD patients performed three motor tests including leg agility, pronation-supination movement of hands, and walking in a clinic while wearing inertial measurement unit sensors on their wrists and ankles. They performed the tests repeatedly before and after taking 150% of their individual oral levodopa-carbidopa equivalent morning dose.Three neurologists blinded to treatment status, viewed patients' videos and rated their motor symptoms, dyskinesia, overall motor state based on selected items of Unified PD Rating Scale (UPDRS) part III, Dyskinesia scale, and Treatment Response Scale (TRS). To build TRIMS, out of initially 178 extracted features from upper- and lower-limbs data, 39 features were selected by stepwise regression method and were used as input to support vector machines to be mapped to mean reference TRS scores using 10-fold cross-validation method. Test-retest reliability, responsiveness to medication, and correlation to TRS as well as other UPDRS items were evaluated for TRIMS.

RESULTS: The correlation of TRIMS with TRS was 0.93. TRIMS had good test-retest reliability (ICC = 0.83). Responsiveness of the TRIMS to medication was good compared to TRS indicating its power in capturing the treatment effects. TRIMS was highly correlated to dyskinesia (R = 0.85), bradykinesia (R = 0.84) and gait (R = 0.79) UPDRS items. Correlation of sensor index from the upper-limb to TRS was 0.89.

CONCLUSION: Using the fusion of upper- and lower-limbs sensor data to construct TRIMS provided accurate PD motor states estimation and responsive to treatment. In addition, quantification of upper-limb sensor data during walking test provided strong results.

National Category
Clinical Medicine
Research subject
Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-31738 (URN)10.1016/j.cmpb.2019.105309 (DOI)31982667 (PubMedID)2-s2.0-85078170133 (Scopus ID)
Available from: 2020-01-29 Created: 2020-01-29 Last updated: 2020-03-12Bibliographically approved
6. Feasibility of Using Dynamic Time Warping to Measure Motor States in Parkinson’s Disease
Open this publication in new window or tab >>Feasibility of Using Dynamic Time Warping to Measure Motor States in Parkinson’s Disease
2020 (English)In: Journal of Sensors, ISSN 1687-725X, E-ISSN 1687-7268, Vol. 2020, article id 3265795Article in journal (Refereed) Published
Abstract [en]

The aim of this paper is to investigate the feasibility of using the Dynamic Time Warping (DTW) method to measure motor states in advanced Parkinson’s disease (PD). Data were collected from 19 PD patients who experimented leg agility motor tests with motion sensors on their ankles once before and multiple times after an administration of 150% of their normal daily dose of medication. Experiments of 22 healthy controls were included. Three movement disorder specialists rated the motor states of the patients according to Treatment Response Scale (TRS) using recorded videos of the experiments. A DTW-based motor state distance score (DDS) was constructed using the acceleration and gyroscope signals collected during leg agility motor tests. Mean DDS showed similar trends to mean TRS scores across the test occasions. Mean DDS was able to differentiate between PD patients at Off and On motor states. DDS was able to classify the motor state changes with good accuracy (82%). The PD patients who showed more response to medication were selected using the TRS scale, and the most related DTW-based features to their TRS scores were investigated. There were individual DTW-based features identified for each patient. In conclusion, the DTW method can provide information about motor states of advanced PD patients which can be used in the development of methods for automatic motor scoring of PD.

Place, publisher, year, edition, pages
Hindawi Publishing Corporation, 2020
Keywords
Dynamic Time Warping, Parkinson's disease, signal processing
National Category
Medical Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
urn:nbn:se:du-31909 (URN)10.1155/2020/3265795 (DOI)000522323600001 ()2-s2.0-85082725240 (Scopus ID)
Available from: 2020-02-16 Created: 2020-02-16 Last updated: 2020-05-05Bibliographically approved

Open Access in DiVA

fulltext(434 kB)52 downloads
File information
File name FULLTEXT01.pdfFile size 434 kBChecksum SHA-512
e46550bce7d5456b979c9c03af17fc1b0aeb576ec3774eb15d174a110958c812b7875329db133a83463d166bb17e508253bbd82bb867e0e4ffbcb4b29e480a03
Type fulltextMimetype application/pdf

Authority records BETA

Aghanavesi, Somayeh

Search in DiVA

By author/editor
Aghanavesi, Somayeh
By organisation
Microdata Analysis
Computer SystemsComputer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 52 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 311 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf