Particles in mechanical pulp show a wide variety but are commonly described using averages and/or collective properties. The authors suggest using distributions of a common bonding factor, BIND (Bonding INDicator), for each particle. The BIND-distribution is based on factor analysis of particle diameter, wall thickness, and external fibrillation of several mechanical pulps measured in an optical analyser. A characteristic BIND-distribution is set in the primary refiner, depending on both wood and process conditions, and remains almost intact along the process. Double-disc refiners gave flatter distributions and lower amounts of fibres with extreme values than single-disc refiners. More refining increased the differences between fibres with low and high BIND. Hence, it is more difficult to develop fibres with lower BIND. Examples are given of how BIND-distributions may be used to assess energy efficiency, fractionation efficiency, and influence of raw material. Mill scale operations were studied for printing-grade thermomechanical pulp (TMP), and board-grade chemi-thermomechanical pulp (CTMP), both from spruce.