Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Solving dynamic multi-objective optimization problems via quantifying intensity of environment changes and ensemble learning-based prediction strategies
Högskolan Dalarna, Institutionen för information och teknik, Mikrodataanalys.ORCID-id: 0000-0003-4212-8582
Vise andre og tillknytning
2024 (engelsk)Inngår i: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 154, artikkel-id 111317Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Algorithms designed to solve dynamic multi-objective optimization problems (DMOPs) need to consider all of themultiple conflicting objectives to determine the optimal solutions. However, objective functions, constraints orparameters can change over time, which presents a considerable challenge. Algorithms should be able not only toidentify the optimal solution but also to quickly detect and respond to any changes of environment. In order toenhance the capability of detection and response to environmental changes, we propose a dynamic multiobjectiveoptimization (DMOO) algorithm based on the detection of environment change intensity andensemble learning (DMOO-DECI&EL). First, we propose a method for detecting environmental change intensity,where the change intensity is quantified and used to design response strategies. Second, a series of responsestrategies under the framework of ensemble learning are given to handle complex environmental changes.Finally, a boundary learning method is introduced to enhance the diversity and uniformity of the solutions.Experimental results on 14 benchmark functions demonstrate that the proposed DMOO-DECI&EL algorithmachieves the best comprehensive performance across three evaluation criteria, which indicates that DMOODECI&EL has better robustness and convergence and can generate solutions with better diversity compared tofive other state-of-the-art dynamic prediction strategies. In addition, the application of DMOO-DECI&EL to thereal-world scenario, namely the economic power dispatch problem, shows that the proposed method caneffectively handle real-world DMOPs.

sted, utgiver, år, opplag, sider
2024. Vol. 154, artikkel-id 111317
Emneord [en]
Dynamic multi-objective optimization, Change intensity quantification, Boundary learning, Ensemble learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-48044DOI: 10.1016/j.asoc.2024.111317ISI: 001178018400001Scopus ID: 2-s2.0-85185463488OAI: oai:DiVA.org:du-48044DiVA, id: diva2:1838476
Tilgjengelig fra: 2024-02-16 Laget: 2024-02-16 Sist oppdatert: 2024-03-25bibliografisk kontrollert

Open Access i DiVA

fulltext(4467 kB)71 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4467 kBChecksum SHA-512
c1214aa2a5b7714cf6ca3ebee70974a0a1e631ae4463c13ff97058fdf067db524bc84c66c0867a48c9951d2a97a42823eceada60eede310087b31f20e2920f6c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Han, Mengjie

Søk i DiVA

Av forfatter/redaktør
Han, Mengjie
Av organisasjonen
I samme tidsskrift
Applied Soft Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 71 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 94 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf