Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Whole Life Carbon Assessment and Life Cycle Cost Analysis of a Single-family Building
Högskolan Dalarna, Institutionen för information och teknik, Byggteknik. Högskolan i Gävle, Energisystem och byggnadsteknik; NORSUS (Norwegian Institute for Sustainability Research), Kråkerøy, Norway.
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The building sector is responsible for 34% of final energy consumption and contributes to 37% of global CO2 emissions. In alignment with sustainability goals, the European Union has set a target to reduce CO2 emissions in the building sector by up to 90% by 2050. Consequently, there is a great need to examine the climate impact of buildings and adopt a comprehensive perspective using a whole life carbon assessment. The aim of the thesis was to examine greenhouse gas (GHG) emissions and costs throughout all life cycle stages, applying a whole life carbon assessment and life cycle cost analysis for a single-family building situated in a Nordic climate. Additionally, both positive (released) and negative GHG emissions were explored and documented, encompassing operational and embodied impacts. In the thesis, the life cycle assessment and the life cycle cost methods have been applied by following the “cradle-to-grave” life cycle perspective. The study includes an analysis of the reference building design and comparisons with improved building design. 

The thesis findings highlight a substantial decrease in released GHG emissions with 23% reduction for the analyzed improved building design showing 5.2 kg CO2e/m2/y50 compared to the reference building design showing 6.7 kg CO2e/m2/y50. Moreover, incorporating biogenic carbon and the D module into the cradle-to-grave approach shows the lowest total GHG emissions, manifesting as negative values, -0.7 kg CO2e/m2/y50 for the improved building design. Embodied impact accounts for 79% and 72% of the total impact, while operational impact accounts for 21% and 28% for the reference and improved building designs. When analyzing all building materials, it is shown that an increased share of wooden building materials in the improved building design results in decreased released (positive) GHG emissions and increased negative GHG emissions. The results underscore the significance of using wood-based building materials due to their manufacturing process having lower GHG emissions compared to non-wood solutions. Considering the reference building design, when analyzing the building energy systems, it should be noted that the embodied GHG emissions from the production phase of solar PV panels are considerably higher when compared to emissions from the ventilation system and heat pump. To decrease the embodied GHG emissions during the production phase of solar PV panels, the manufacturing process should be done in countries with a larger share of renewable energy sources in the electricity grid. Moreover, recognizing building materials with low GHG emissions that are economically profitable during the early phases of building design and construction is essential for reducing long-term environmental and economic consequences. Additionally, considering the utilization of reusable building products over new ones could be seen as a winning strategy for mitigating the climate impact in the building sector and decreasing the use of natural resources and waste. 

Considering the economic impact, it can be noted that the construction costs are greater than operational costs and end-of-life costs comparing all life cycle stages. Approximately 50% of the construction costs are labor costs, followed by investment costs for building materials, installations, and pre-construction costs. Analyzing the building products’ costs, it is important to note that selecting cross-laminated timber (CLT) for a foundation could lead to higher investment costs compared to concrete slabs. 

In conclusion, the result of the thesis encompasses a whole life carbon assessment in buildings. It underscores the importance of revealing all carbon flows associated with single-family buildings. Finally, the thesis outlines the advantages of utilizing wood-based materials and reusable building products for building owners, contractors, designers, architects, consultants, and other decision-makers. It emphasizes the importance of considering both the environmental and economic aspects of buildings to attain a comprehensive understanding.

Abstract [sv]

Byggsektorn är ansvarig för 34% av slutlig energiförbrukning och bidrar till 37% av de globala CO2-utsläppen. I linje med hållbarhetsmålen har Europeiska unionen satt som mål att minska CO2-utsläppen inom byggsektorn med upp till 90% till år 2050. Följaktligen finns det ett stort behov av att undersöka byggnaders klimatpåverkan och anta ett helhetsperspektiv genom att använda livscykelanalys av koldioxid. Syftet med avhandlingen var att undersöka koldioxidutsläpp (växthusgasutsläpp) och kostnader under alla livscykelstadier genom att tillämpa en hel livscykelanalys och livscykelkostnadsanalys för ett enfamiljshus i ett nordiskt klimat. Dessutom undersöktes och dokumenterades både positiva (utsläppta) och negativa växthusgasutsläpp, som innefattade påverkan från både produktion och användning. I avhandlingen har metoderna livscykelanalys och livscykelkostnadsanalys använts med ett ”vagga-till-grav” livscykelperspektiv. Studien inkluderar en analys av referensbyggnadens utformning samt jämförelser med förbättrade utformningar av byggnaden.

Avhandlingens resultat lyfter fram att växthusgasutsläppen minskar med 23% för den analyserade förbättrade utformningen av byggnaden, som ger 5.2 kg CO2e/m2/y50 jämfört med referensbyggnadens utformning som ger 6.7 kg CO2e/m2/y50. Dessutom, när biogen koldioxid och D-modulen inkluderas i livscykelanalysen från vaggan till graven visar sig de lägsta totala (växthusgas)utsläppen, som innebär negativa värden, -0.7 kg CO2e/m2/y50 för den förbättrade utformningen av byggnaden. Påverkan från produktion av material och produkter står för 79% och 72% av den totala påverkan (på koldioxidutsläppen), medan påverkan från driften står för 21% och 28% för referens- och förbättrad byggnadsdesign. När alla byggnadsmaterial analyseras visar det sig att en ökad andel av byggnadsmaterial av trä i den förbättrade utformningen av byggnaden resulterar i en minskning av utsläppta (positiva) växthusgasutsläpp och ökade negativa växthusgasutsläpp. Resultaten understryker vikten av att använda trä som byggmaterial på grund av de lägre koldioxidutsläppen från tillverkningsprocessen jämfört med icke-träbaserade lösningar. Vid analys av byggnadens energisystem bör det noteras att de inbäddade växthusgasutsläppen från produktionsfasen av solcellspaneler är betydligt högre jämfört med utsläpp från ventilationssystemet och värmepumpen för referensbyggnadens utformning. För att minska de inbäddade växthusgasutsläppen under produktionsfasen av solcellspaneler bör tillverkningsprocessen ske i länder med en större andel förnybara energiproduktion i elnätet. Dessutom är det avgörande att i tidiga skeden av byggprojekt och byggproduktion uppmärksamma byggmaterial med låg klimatpåverkan som är ekonomiskt lönsamma för att minska de långsiktiga konsekvenserna på miljö och ekonomi. Dessutom kan användningen av återanvändbara byggprodukter jämfört med nya ses som en framgångsrik strategi för att minska klimatpåverkan inom byggsektorn och minska användningen av naturresurser och avfall.

Vid bedömning av ekonomisk påverkan kan det noteras att vid jämförelse av alla livscykelfaser byggkostnaderna större än driftskostnader och kostnader vid slutet av livscykeln. Ungefär 50% av byggkostnaderna är arbetskraftskostnader, följt av investeringskostnader för byggmaterial, installationer och förberedande byggkostnader. Vid analys av byggprodukternas kostnader är det viktigt att notera att valet av korslaminerat trä för en grund (bottenbjälklag) kan leda till högre kostnader jämfört med användning av betong i bjälklaget.

Sammanfattningsvis omfattar avhandlingens resultat en livscykelanalys av koldioxidutsläpp från byggnader. Den betonar vikten av att avslöja alla flöden av koldioxid som är förknippade med byggnader. Slutligen beskriver avhandlingen fördelarna med att använda träbaserade material och återanvändbara byggprodukter för fastighetsägare, entreprenörer, designers, arkitekter, konsulter och andra beslutsfattare. Den betonar betydelsen av att ta hänsyn till såväl miljöaspekter som ekonomiska aspekter av byggnader för att uppnå en omfattande förståelse.

sted, utgiver, år, opplag, sider
Gävle: Gävle University Press , 2024. , s. 59
Serie
Doctoral thesis ; 46
Emneord [en]
Building, greenhouse gas emissions, global warming potential, building energy systems, life cycle assessment, life cycle cost, reuse, wood
Emneord [sv]
Byggnad, utsläpp av växthusgaser, global uppvärmningspotential, energisystem, livscykelanalys, livscykelkostnad, återanvändning, trä
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-48755ISBN: 978-91-89593-32-9 (tryckt)ISBN: 978-91-89593-33-6 (digital)OAI: oai:DiVA.org:du-48755DiVA, id: diva2:1871636
Disputas
2024-06-03, 12:108, Kungsbäcksvägen 47, Gävle, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-06-17 Laget: 2024-06-17 Sist oppdatert: 2024-06-17bibliografisk kontrollert
Delarbeid
1. Life cycle assessment of a wooden single-family house in Sweden
Åpne denne publikasjonen i ny fane eller vindu >>Life cycle assessment of a wooden single-family house in Sweden
Vise andre…
2019 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 251, s. 113-253, artikkel-id 113253Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To understand the reasons behind the large environmental impact from buildings the whole life cycle needs to be considered. Therefore, this study evaluates the carbon dioxide emissions in all stages of a single-family house in Sweden from the production of building materials, followed by construction and user stages until the end-of-life of the building in a life cycle assessment (LCA). The methodology applied is attributional life cycle assessment (LCA) based on ‘One Click LCA’ tool and a calculated life span of 100 years. Global warming potential (GWP) and primary energy (PE) are calculated by using specific data from the case study, furthermore the data regarding building materials are based on Environmental Product Declarations (EPDs). The results show that the selection of wood-based materials has a significantly lower impact on the carbon dioxide emissions in comparison with non-wood based materials. The total emissions for this single-family house in Sweden are 6 kg CO 2 e/m 2 /year. The production stage of building materials, including building systems and installations represent 30% of the total carbon dioxide equivalent emissions, while the maintenance and replacement part represents 37%. However, energy use during the in-use stage of the house recorded lower environmental impact (21%) due to the Swedish electricity mix that is mostly based on energy sources with low carbon dioxide emissions. The water consumption, construction and the end-of-life stages have shown minor contribution to the buildings total greenhouse gas (GHG) emissions (12%). The primary energy indicator shows the largest share in the operational phase of the house.

Emneord
Carbon dioxide equivalent emission, Environmental product declaration, Global warming potential, Life cycle assessment, Primary energy, Single-family house
HSV kategori
Forskningsprogram
Forskningsprofiler 2009-2020, Energi och samhällsbyggnad
Identifikatorer
urn:nbn:se:du-30118 (URN)10.1016/j.apenergy.2019.05.056 (DOI)000497966300013 ()2-s2.0-85065788114 (Scopus ID)
Tilgjengelig fra: 2019-05-31 Laget: 2019-05-31 Sist oppdatert: 2024-06-17bibliografisk kontrollert
2. Life cycle cost analysis of a single-family house in Sweden
Åpne denne publikasjonen i ny fane eller vindu >>Life cycle cost analysis of a single-family house in Sweden
2021 (engelsk)Inngår i: Buildings, E-ISSN 2075-5309, Vol. 11, nr 5, artikkel-id 215Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The objective of this paper was to explore long-term costs for a single-family house in Sweden during its entire lifetime. In order to estimate the total costs, considering construction, replacement, operation, and end-of-life costs over the long term, the life cycle cost (LCC) method was applied. Different cost solutions were analysed including various economic parameters in a sensitivity analysis. Economic parameters used in the analysis include various nominal discount rates (7%, 5% and 3%), an inflation rate of 2%, and energy escalation rates (2-6%). The study includes two lifespans (100 and 50 years). The discounting scheme was used in the calculations. Additionally, carbon-dioxide equivalent (CO2e) emissions were considered and systematically analysed with costs. Findings show that when the discount rate is decreased from 7% to 3% the total costs are increased significantly, by 44% for a 100-year lifespan, while for a 50 years lifespan the total costs show a minor increase by 18%. The construction costs represent a major part of total LCC, with labor costs making up half of them. Considering costs and emissions together, a full correlation was not found, while a partial relationship was investigated. Results can be useful for decision-makers in the building sector.

sted, utgiver, år, opplag, sider
Basel, Switzerland: , 2021
Emneord
building; discount rate; house; life cycle cost; lifespan.
HSV kategori
Identifikatorer
urn:nbn:se:du-37218 (URN)10.3390/buildings11050215 (DOI)000653576100001 ()2-s2.0-85107208000 (Scopus ID)
Forskningsfinansiär
Länsförsäkringar AB
Tilgjengelig fra: 2021-05-30 Laget: 2021-05-30 Sist oppdatert: 2024-06-17bibliografisk kontrollert
3. Carbon assessment of a wooden single-family building – A novel deep green design and elaborating on assessment parameters
Åpne denne publikasjonen i ny fane eller vindu >>Carbon assessment of a wooden single-family building – A novel deep green design and elaborating on assessment parameters
2023 (engelsk)Inngår i: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 233, artikkel-id 110093Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The aim of this study was to investigate how the carbon accounting of a wooden single-family house is affected by (1) decreasing the carbon footprint by changes in building design, (2) differentiating biogenic carbon from fossil carbon and (3) including external benefits beyond the state-of-the-art system boundaries. The motivation of exploring different system boundaries, improved building design and investigating benefits aside of system boundaries rely on the fact of having the “full” picture of GHG emissions of building products. Changes in building design were analyzed by life cycle assessment (LCA) focusing on greenhouse gas (GHG) emissions, while the costs were assessed by using lice cycle cost (LCC). The findings showed that by including positive and negative emissions from the production phase for an improved building design within scenario 4 ‘Cradle to Gate + Biogenic Carbon + D module’ has the lowest embodied GHG emissions when compared to other approaches with −3.5 kg CO2e/m2/y50. Considering the impacts of the whole building, the lowest GHG emissions are within the scenario 8 ‘Cradle to Grave + Biogenic Carbon + D module‘ for the improved building design with −0.7 kg CO2e/m2/y50. The results suggest that a change to sustainable alternatives for building components that makes the whole building to be constructed by wood, could lead to significant reduction of GHG emissions compared to conventional material choices. Economically, testing sustainable solutions, the highlighted results are the construction costs that are almost double higher for CLT elements for the foundation compared to concrete. © 2023

Emneord
Biogenic carbon; Greenhouse gas (GHG); Life cycle assessment (LCA); Life cycle cost (LCC); Wood
HSV kategori
Identifikatorer
urn:nbn:se:du-45713 (URN)10.1016/j.buildenv.2023.110093 (DOI)000946735400001 ()2-s2.0-85150344074 (Scopus ID)
Tilgjengelig fra: 2023-03-27 Laget: 2023-03-27 Sist oppdatert: 2024-06-17bibliografisk kontrollert
4. Carbon Assessment of a Wooden Single-Family Building—Focusing on Re-Used Building Products
Åpne denne publikasjonen i ny fane eller vindu >>Carbon Assessment of a Wooden Single-Family Building—Focusing on Re-Used Building Products
2024 (engelsk)Inngår i: Buildings, E-ISSN 2075-5309, Vol. 14, nr 3, artikkel-id 800Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Previous research has shown a lack of studies with comparisons between primary (virgin) and secondary (re-used) building materials, and their embodied emissions. The creation of different scenarios comparing the environmental impact of virgin vs. re-used materials is also motivated by the scarcity of raw materials in the world and the emergency of mitigating greenhouse gas (GHG) emissions from buildings. The aim of this study was to investigate scenarios, including new vs. re-used building products, applying the LCA method for a wooden single-family building. The findings showed a 23% reduction potential for total released (positive) CO2e when comparing the Reference scenario with Scenario I, using re-used wooden-based materials. Further, Scenario II, using all re-used building materials except for installations, showed a 59% CO2e reduction potential compared to the Reference scenario. Finally, Scenario III, which assumes all re-used building products, showed a 92% decreased global warming potential (GWP) impact compared to the Reference scenario. However, when including biogenic carbon and benefits (A5 and D module), the Reference scenario, based on newly produced wooden building materials, has the largest negative GHG emissions. It can be concluded that the re-use of building products leads to significant carbon savings compared to using new building products.

Emneord
biogenic carbon; circularity; end-of-life (EOL); life cycle assessment (LCA); global warming potential (GWP); environmental impact; wood; single-family building
HSV kategori
Identifikatorer
urn:nbn:se:du-48303 (URN)10.3390/buildings14030800 (DOI)
Prosjekter
Dalarnas Villa
Tilgjengelig fra: 2024-03-26 Laget: 2024-03-26 Sist oppdatert: 2024-06-17bibliografisk kontrollert

Open Access i DiVA

fulltekst(2636 kB)66 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2636 kBChecksum SHA-512
beac15a0c5098f66bb6ccc95bc98cfe83b729111dc8b0505e00f6758e2cdcca65f9434e2056b71467b24ee71b3d23b779f213be73010b2f1ad242ea152311eac
Type fulltextMimetype application/pdf

Andre lenker

preview imagehttps://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-43955

Person

Petrovic, Bojana

Søk i DiVA

Av forfatter/redaktør
Petrovic, Bojana
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 66 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 455 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf