Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CO2-free paper?
Dalarna University, School of Technology and Business Studies, Graphic/Arts Technology.
2004 (English)In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 42, p. 317-336Article in journal (Refereed) Published
Abstract [en]

Black liquor gasification–combined cycle (BLGCC) is a new technology that has the potential to increase electricity production of a chemical pulping mill. Increased electricity generation in combination with the potential to use biomass (e.g. bark, hog fuel) more efficiently can result in increased power output compared to the conventional Tomlinson-boiler. Because the BLGCC enables an integrated pulp and paper mill to produce excess power, it can offset electricity produced by power plants. This may lead to reduction of the net-CO2 emissions. The impact of BLGCC to offset CO2 emissions from the pulp and paper industry is studied. We focus on two different plant designs and compare the situation in Sweden and the US. The CO2 emissions are studied as function of the share of recycled fibre used to make the paper. The study shows that under specific conditions the production of “CO2-free paper” is possible. First, energy efficiency in pulp and paper mills needs to be improved to allow the export of sufficient power to offset emissions from fossil fuels used in boilers and other equipment. Secondly, the net-CO2 emission per ton of paper depends strongly on the emission reduction credits for electricity export, and hence on the country or grid to which the paper mill is connected. Thirdly, supplemental use of biomass to replace fossil fuel inputs is important to reduce the overall emissions of the pulp and paper industry.

Place, publisher, year, edition, pages
Elsevier , 2004. Vol. 42, p. 317-336
Keywords [en]
climate change; Greenhouse gas emissions; Paper; Black liquor; Gasification
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:du-1078OAI: oai:dalea.du.se:1078DiVA, id: diva2:519508
Available from: 2005-05-13 Created: 2005-05-13 Last updated: 2022-09-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Graphic/Arts Technology
In the same journal
Resources, Conservation and Recycling
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 410 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf