du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterisation of a Non-Organofunctional Silane Film Deposited on Al, Zn and Al-43.4Zn-1.6Si Alloy Coated Steel, Part II. Interfacial Characterization by ToF-SIMS and AES
Dalarna University, School of Technology and Business Studies, Material Science.
Dalarna University, School of Technology and Business Studies, Material Science.
2001 (English)In: Surface and Interface Analysis, ISSN 0142-2421, E-ISSN 1096-9918, Vol. 31, no 3, p. 223-231Article in journal (Refereed) Published
Abstract [en]

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to analyse the interface between a non-organofunctional silane and three different metal substrates (aluminium, zinc and an aluminium-zinc alloy). Ion etching using Ga+ ions was used to expose the interfacial region. Ion fragments from the samples were examined carefully where supposed metal-oxygen-silicon ion fragments should appear in the mass spectra. From high mass resolution spectra it was concluded that there exists an AlOSi+ ion fragment at nominal mass m/z = 71 amu on the aluminium and aluminium-zinc alloy substrates and a ZnOSi+ ion fragment at nominal mass m/z = 108 amu on the zinc and aluminium-zinc alloy substrates. These results are further enhanced by the fact that the characteristic ion pattern of ZnOSi+-type ion fragments, composed of different naturally stable zinc and silicon isotopes, in the mass range m/z = 108-112 amu showed the expected relative peak height relations. The presence of these metal-oxygen-silicon ion fragments is a strong indication that chemical interaction between the silane and the metal substrates exists and that the nature of this interaction is due to the formation of a covalent bond between the silane and the metal substrate. Copyright © 2001 John Wiley & Sons, Ltd.

Place, publisher, year, edition, pages
2001. Vol. 31, no 3, p. 223-231
Keywords [en]
metal substrates; silane films; AES; interfacial bonding; ToF-SIMS
Identifiers
URN: urn:nbn:se:du-2675OAI: oai:dalea.du.se:2675DiVA, id: diva2:519801
Available from: 2007-04-04 Created: 2007-04-04 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Bexell, UlfOlsson, Mikael
By organisation
Material Science
In the same journal
Surface and Interface Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 602 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf