Dalarna University's logo and link to the university's website

du.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructural investigation of the initial oxidation of the FeCrAlRE alloy Kanthal AF in dry and wet O2 at 600 and 800°C
Dalarna University, School of Technology and Business Studies, Material Science.
Show others and affiliations
2010 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 157, no 6, p. C223-C230Article in journal (Refereed) Published
Abstract [en]

The FeCrAlRE (where RE is reactive element) alloy Kanthal AF was exposed isothermally at 600 and 800°C for 72 h in dry O2 and in O2 with 10 vol % H2O. The mass gains were 3–5 times higher at the higher temperature. The presence of water vapor increased the oxidation rate at 800°C, while no significant effect was observed at 600°C. A thin two-layered oxide formed at 600°C: an outer (Fe,Cr)2O3 corundum-type oxide, containing some Al, and an inner, probably amorphous, Al-rich oxide. At 800°C a two-layered oxide formed in both environments. The inner layer consisted of inward grown a-Al2O3. In dry O2 the originally formed outward grown g-Al2O3 had transformed to a-Al2O3 after 72 h. Water vapor stabilized the outward grown g-Al2O3 and hence no transformation occurred after 72 h in humid environment. RE-rich oxide particles with varying composition (Y, Zr, and Ti) were distributed in the base oxide at both temperatures and in both environments. The RE-rich particles were separated from the alloy substrate by a layer of Al-rich oxide. At 800°C the Y-rich RE particles were surrounded by thick oxide patches in both dry and humid O2.

Place, publisher, year, edition, pages
The electrochemical society , 2010. Vol. 157, no 6, p. C223-C230
Keywords [sv]
FeCrAl-legering, högtemperaturoxidation, transmissionselektronmikroskopi
National Category
Manufacturing, Surface and Joining Technology
Research subject
Research Profiles 2009-2020, Steel Forming and Surface Engineering
Identifiers
URN: urn:nbn:se:du-4669DOI: 10.1149/1.3391447ISI: 000277260200050Scopus ID: 2-s2.0-77958558527OAI: oai:dalea.du.se:4669DiVA, id: diva2:520189
Available from: 2010-04-28 Created: 2010-04-28 Last updated: 2021-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Engkvist, JosefinOlsson, Mikael
By organisation
Material Science
In the same journal
Journal of the Electrochemical Society
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf