du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting major genetic loci controlling phenotypic variability in experimental crosses
Högskolan Dalarna, Akademin Industri och samhälle, Statistik.ORCID-id: 0000-0002-1057-5401
2011 (engelsk)Inngår i: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 188, nr 2, s. 435-447Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait’s average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual’s character is not only of great practical importance in medical genetics and food production but is also of scienti?c and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, ?owering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F2 and collaborative cross data, and on a real F2 intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally.

sted, utgiver, år, opplag, sider
London: Biomed Central , 2011. Vol. 188, nr 2, s. 435-447
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys, Statistisk modellering är grunden till en ökad förståelse inom genetik!
Identifikatorer
URN: urn:nbn:se:du-5565DOI: 10.1534/genetics.111.127068ISI: 000291344900016OAI: oai:dalea.du.se:5565DiVA, id: diva2:520367
Tilgjengelig fra: 2011-06-14 Laget: 2011-06-14 Sist oppdatert: 2017-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstFulltext artikel

Personposter BETA

Rönnegård, Lars

Søk i DiVA

Av forfatter/redaktør
Rönnegård, Lars
Av organisasjonen
I samme tidsskrift
Genetics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 615 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf