du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Segmentation of fingerprint images based on bi-level combination of global and local processing
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-1429-2345
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0001-6526-6537
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2012 (Engelska)Ingår i: Journal of Intelligent Systems, ISSN 2191-026X, Vol. 21, nr 2, s. 97-120Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a new approach to segment low quality fingerprint imageswhich are collected by low quality fingerprint readers. Images collected using such readersare easy to collect but difficult to segment. The proposed approach is based on combiningglobal and local processing to achieve segmentation of fingerprint images. On the globallevel, the fingerprint is located and extracted from the rest of the image by using a globalthresholding followed by dilation and edge detection of the largest object in the image.On the local level, fingerprint’s foreground and its border image are treated using differentfuzzy rules. These rules are based on the mean and variance of the block under consideration.The approach is implemented in three stages: pre-processing, segmentation, andpost-processing.Segmentation of 100 images was performed and compared with manual examinationsby human experts. The experiments showed that 96% of images under test are correctlysegmented. The results from the quality of segmentation test revealed that the averageerror in block segmentation was 2.84% and the false positive and false negatives wereapproximately 1.4%. This indicates the high robustness of the proposed approach.

Ort, förlag, år, upplaga, sidor
Berlin: Walter de Gruyter, 2012. Vol. 21, nr 2, s. 97-120
Nyckelord [en]
Average errors; False negatives; False positive; Features; Fingerprint images; Fingerprint reader; Fingerprints; Global levels; Global thresholding; High robustness; Human expert; Local processing; Low qualities; Manual examination; Post processing; Pre-processing, Edge detection; Fuzzy sets, Image segmentation
Nationell ämneskategori
Datorsystem
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-10163DOI: 10.1515/jisys-2012-0005OAI: oai:DiVA.org:du-10163DiVA, id: diva2:532728
Tillgänglig från: 2012-06-12 Skapad: 2012-06-12 Senast uppdaterad: 2016-02-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Fleyeh, HasanJomaa, Diala

Sök vidare i DiVA

Av författaren/redaktören
Fleyeh, HasanJomaa, DialaDougherty, Mark
Av organisationen
Datateknik
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 786 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf