du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability
Högskolan Dalarna, Akademin Industri och samhälle, Statistik.ORCID-id: 0000-0002-1057-5401
2012 (engelsk)Inngår i: BMC Genetics, ISSN 1471-2156, E-ISSN 1471-2156, Vol. 13, artikkel-id 63Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.

sted, utgiver, år, opplag, sider
2012. Vol. 13, artikkel-id 63
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys, Statistisk modellering är grunden till en ökad förståelse inom genetik!; Komplexa system - mikrodataanalys, Allmänt Mikrodataaanalys - metod
Identifikatorer
URN: urn:nbn:se:du-10527DOI: 10.1186/1471-2156-13-63ISI: 000312139100001PubMedID: 22827487OAI: oai:DiVA.org:du-10527DiVA, id: diva2:543344
Forskningsfinansiär
Swedish Research Council FormasTilgjengelig fra: 2012-08-07 Laget: 2012-08-07 Sist oppdatert: 2017-12-07bibliografisk kontrollert

Open Access i DiVA

fulltext(324 kB)116 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 324 kBChecksum SHA-512
172ed05d74dd8ff476f50b3a2fe92bdd3ef71b052d4443d17fdbb909e90c1f88e8849df169ed8d410e43101a86c0d625f70269db171dcd8892fa292ce2585d8b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Rönnegård, Lars

Søk i DiVA

Av forfatter/redaktør
Rönnegård, Lars
Av organisasjonen
I samme tidsskrift
BMC Genetics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 116 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 677 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf