du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Computer Vision Framework For Finger-Tapping Evaluation In Parkinson's Disease
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. Malardalen University, Vasteras 72123, Sweden. (PAULINA)ORCID-id: 0000-0002-2752-3712
Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)ORCID-id: 0000-0003-0403-338X
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)
2013 (Engelska)Ingår i: Movement Disorders: Supplement: Abstracts of the Seventeenth International Congress of Parkinson's Disease and Movement Disorders, Movement Disorder Society , 2013, s. 110-111Konferensbidrag, Poster (med eller utan abstract) (Refereegranskat)
Abstract [en]

Objective:

To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT).

Background:

The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced.

Methods:

A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT.

The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged.

Results:

A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments.

Conclusions:

The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings

Ort, förlag, år, upplaga, sidor
Movement Disorder Society , 2013. s. 110-111
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-13113DOI: 10.1002/mds.25605ISI: 000320940501046OAI: oai:DiVA.org:du-13113DiVA, id: diva2:654004
Konferens
17th International Congress of Parkinson's Disease and Movement Disorders, June 16-20 2013
Projekt
PAULINA
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2013-10-07 Skapad: 2013-10-07 Senast uppdaterad: 2015-06-29Bibliografiskt granskad

Open Access i DiVA

fulltext(6745 kB)263 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6745 kBChecksumma SHA-512
bdba122797a5781c8d32f226dac2ae751bd4caa3f1542ec4a1f34d32e94e597f64dfdf7bfa3087160f37121d2f2f63d38d7fb064fd62ed1a06f1b0aec740aed9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Khan, TahaWestin, Jerker

Sök vidare i DiVA

Av författaren/redaktören
Khan, TahaWestin, JerkerDougherty, Mark
Av organisationen
Datateknik
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 263 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 828 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf