du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monitoring vegetation on railway embankments: supporting maintenance decisions
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. School of Engineering and the Built Environment, Edinburgh Napier University, EH10 5DT Edinburgh, UK.ORCID-id: 0000-0003-4812-4988
School of Engineering and the Built Environment, Edinburgh Napier University, EH10 5DT Edinburgh, UK.
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2013 (Engelska)Ingår i: Proceedings of the 2013 International Conference on Ecology and Transportation, 2013, s. 1-18Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections

Ort, förlag, år, upplaga, sidor
2013. s. 1-18
Nationell ämneskategori
Teknik och teknologier Datavetenskap (datalogi) Ekologi Datorseende och robotik (autonoma system)
Forskningsämne
Komplexa system - mikrodataanalys, Automatisk detektering och karakterisering av vegetation längs järnvägen; Komplexa system - mikrodataanalys, Utveckling av metod för att bedöma behovet av ogräsbekämpning i spår
Identifikatorer
URN: urn:nbn:se:du-13314OAI: oai:DiVA.org:du-13314DiVA, id: diva2:667203
Konferens
International Conference on Ecology and Transportation, June 23-27 Arizona US
Tillgänglig från: 2013-11-25 Skapad: 2013-11-25 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

ICOET2013_Paper103C_Nyberg_at_al.pdf(771 kB)308 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 771 kBChecksumma SHA-512
a987d8a08e2bac9e447d15649c245b799f6cc79324e5d7bb10676794dad9c2be5ec5ca59bb3bc67f319dbc99b625e7043b40cc2af87bc1b9796cbb5470f6ae66
Typ fulltextMimetyp application/pdf

Övriga länkar

ICOET2013_Paper103C_Nyberg_at_al.pdf

Personposter BETA

Nyberg, Roger G.

Sök vidare i DiVA

Av författaren/redaktören
Nyberg, Roger G.Yella, SirilDougherty, Mark
Av organisationen
Datateknik
Teknik och teknologierDatavetenskap (datalogi)EkologiDatorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 308 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 856 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf