du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A case study in healthcare informatics: a telemedicine framework for automated parkinson’s disease symptom assessment
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-2752-3712
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-2372-4226
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.ORCID-id: 0000-0003-3681-8173
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0003-0403-338X
2014 (Engelska)Ingår i: Smart Health: International Conference, ICSH 2014, Beijing, China, July 10-11, 2014. Proceedings / [ed] Zheng X. et al., Springer, 2014, s. 197-199Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper reports the development and evaluation of a mobile-based telemedicine framework for enabling remote monitoring of Parkinson’s disease (PD) symptoms. The system consists of different measurement devices for remote collection, processing and presentation of symptom data of advanced PD patients. Different numerical analysis techniques were applied on the raw symptom data to extract clinically symptom information which in turn were then used in a machine learning process to be mapped to the standard clinician-based measures. The methods for quantitative and automatic assessment of symptoms were then evaluated for their clinimetric properties such as validity, reliability and sensitivity to change. Results from several studies indicate that the methods had good metrics suggesting that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients.

Ort, förlag, år, upplaga, sidor
Springer, 2014. s. 197-199
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 8549
Nyckelord [en]
patient monitoring, Parkinson’s disease, sensors, machine learning, healthcare informatics, artificial intelligence
Nationell ämneskategori
Datorteknik
Forskningsämne
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-15069ISBN: 978-3-319-08416-9 (tryckt)OAI: oai:DiVA.org:du-15069DiVA, id: diva2:741116
Konferens
International Conference, ICSH 2014, Beijing, China, July 10-11, 2014
Forskningsfinansiär
KK-stiftelsen, 20130041Tillgänglig från: 2014-08-27 Skapad: 2014-08-27 Senast uppdaterad: 2020-01-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Khan, TahaMemedi, MevludinSong, William WeiWestin, Jerker

Sök vidare i DiVA

Av författaren/redaktören
Khan, TahaMemedi, MevludinSong, William WeiWestin, Jerker
Av organisationen
DatateknikInformatik
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 927 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf