du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic spiral analysis for objective assessment of motor symptoms in Parkinson's disease
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-2372-4226
Faculty of Information Science, Artificial Intelligence Laboratory, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Information Science, Artificial Intelligence Laboratory, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Information Science, Artificial Intelligence Laboratory, University of Ljubljana, Ljubljana, Slovenia.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 15, nr 9, s. 23727-23744Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.

Ort, förlag, år, upplaga, sidor
MDPI , 2015. Vol. 15, nr 9, s. 23727-23744
Nyckelord [en]
bradykinesia; digital spiral analysis; dyskinesia; machine learning; motor fluctuations; objective measures; Parkinson’s disease; remote monitoring; time series analysis; visualization
Nationell ämneskategori
Datorteknik Datavetenskap (datalogi) Systemvetenskap, informationssystem och informatik
Forskningsämne
Komplexa system - mikrodataanalys, FLOAT - Flexibel levodopa-optimerings och individanpassningsteknik
Identifikatorer
URN: urn:nbn:se:du-19472DOI: 10.3390/s150923727ISI: 000362512200139PubMedID: 26393595OAI: oai:DiVA.org:du-19472DiVA, id: diva2:854673
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2015-09-17 Skapad: 2015-09-17 Senast uppdaterad: 2020-01-23Bibliografiskt granskad

Open Access i DiVA

fulltext(1345 kB)156 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1345 kBChecksumma SHA-512
049c2b81b68196f186f6732d54a08420fb5a09b38570eafd4a88ad852da6a827b662995d07efc4121d889fe59d173ba7a527c547750c66f664c06059c2ca8437
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Memedi, Mevludin

Sök vidare i DiVA

Av författaren/redaktören
Memedi, Mevludin
Av organisationen
Datateknik
I samma tidskrift
Sensors
DatorteknikDatavetenskap (datalogi)Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 156 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 563 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf