du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Traffic sign recognition without color information
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-1429-2345
2015 (engelsk)Inngår i: Colour and Visual Computing Symposium (CVCS), 2015 / [ed] Pedersen, M; Thomas, JB, IEEE conference proceedings, 2015, s. 1-6Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Color represents an important attribute in the field of traffic sign recognition. However, when the color of the traffic sign fades or the traffic scene is collected in gray as in the case of Infrared imaging, then color based recognition systems fail. Other problems related to color are simply that different countries use different colors. Even within the European Union, colors of traffic signs are not the same. This paper aims to present a new approach to detect traffic signs without color attributes. It is based a two-stage sliding window which detects traffic signs in the multi-scale image. Histogram of Oriented Gradients HOG descriptors are computed as a quality function which are evaluated by two SVM classifier; the coarse and the fine detectors. Different objects detected by the coarse detectors are clustered and a fine search is conducted in the areas where traffic signs are more probable to exist. Experiments conducted to detect traffic signs under different light conditions such as sunny, cloudy, fog and snow fall have showed a performance of 98% and very low false positive rate. The proposed approach was tested on the Yield traffic signs because it has a simple triangular shape which can be found in many places other than the traffic signs which represent a challenge to the proposed approach.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2015. s. 1-6
Emneord [en]
Traffic sign Recognition, SVM, HOG descriptors, Classification, Multi-scale images
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-21032DOI: 10.1109/CVCS.2015.7274886ISI: 000380410200009OAI: oai:DiVA.org:du-21032DiVA, id: diva2:902907
Konferanse
Colour and Visual Computing Symposium (CVCS), 2015, Gjovik, 25-26 Aug. 2015
Tilgjengelig fra: 2016-02-12 Laget: 2016-02-12 Sist oppdatert: 2019-10-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Fleyeh, Hasan

Søk i DiVA

Av forfatter/redaktør
Fleyeh, Hasan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 358 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf