du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling Hospital Readmissions in Dalarna County, Sweden
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2016 (svensk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Unplanned hospital readmissions increase health and medical care costs and indicate lower the lower quality of the healthcare services. Hence, predicting patients at risk to be readmitted is of interest. Using administrative data of patients being treated in the medical centers and hospitals in the Dalarna County, Sweden, during 2008 – 2016 two risk prediction models of hospital readmission are built. The first model relies on the logistic regression (LR) approach, predicts correctly 2,648 out of 3,392 observed readmission in the test dataset, reaching a c-statistics of 0.69. The second model is built using random forests (RF) algorithm; correctly predicts 2,183 readmission (out of 3,366) and 13,198 non-readmission events (out of 18,982). The discriminating ability of the best performing RF model (c-statistic 0.60) is comparable to that of the logistic model. Although the discriminating ability of both LR and RF risk prediction models is relatively modest, still these models are capable to identify patients running high risk of hospital readmission. These patients can then be targeted with specific interventions, in order to prevent the readmission, improve patients’ quality of life and reduce health and medical care costs.

sted, utgiver, år, opplag, sider
2016.
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-22461OAI: oai:DiVA.org:du-22461DiVA, id: diva2:943158
Tilgjengelig fra: 2016-06-27 Laget: 2016-06-27 Sist oppdatert: 2018-01-10

Open Access i DiVA

fulltext(1030 kB)93 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1030 kBChecksum SHA-512
e6d376bd3317301129d5401351733fcc27f57b6f2f59f8ce1d5dd43ea582f0e184253eb0ec60a66687c528612ad2fadbcb7eba6ea57c735de42f3e823ff4b5f9
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 93 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 84 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf