Experimentally determined incubation times in the thermal decomposition of methyl radicals were used to obtain collisional energy transfer probability information by adopting a discrete vibrational energy level masterequation scheme with specific rate constants from the statistical adiabatic channel model. The agreement with information from classical molecular dynamic, MD, simulations of CH3–Ar collisions was shown to be remarkably good. Results from MD simulations also support the assumption of thermally equilibrated rotations used here and in earlier work. The sensitivity of the pressure fall-off behaviour of the decomposition channels to remaining uncertainties in the energy transfer profiles is shown to be significant, in this case, as a consequence of the large number of collisions needed to reach activation. Nevertheless, we find classical molecular dynamics simulation to be useful and a good starting point in obtaining the collisional energy transfer kernel to be used in master-equation calculations treating the most obvious quantum effects through the use of discrete energy levels at low energies.