Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Progress on the modeling of the collisional energy transfer mechanism in unimolecular reactions
1997 (English)In: Berichte Der Bunsen-Gesellschaft: Physical Chemistry, Chemical Physics, ISSN 0005-9021, Vol. 101, p. 574-580Article in journal (Refereed) Published
Abstract [en]

The RRKM theory of unimolecular reaction rates is a statistical mechanical theory based on an assumption of microcanonical equilibrium in the reactant phase space. The energy transfer in reactant medium collisions was originally described by a canonical strong collision assumption, i.e., an assumption of full thermal equilibration in each collision. In our work we first introduce a microcanonical strong collision assumption which gives the RRKM theory a consistent form. We then introduce parametrizations of the degree of weakness (nonergodicity) of the collisions. A concept of collision efficiency is defined. The weakness of the collision is expressed in terms of reduced subsets of active reactant and medium degrees of freedom. The corresponding partially ergodic collision theory (PECT) yields physical functional forms of the collisional energy transfer kernel P(E,E). In order to resolve the energy and temperature dependence and the dependence on interaction strength a multiple encounter theory is introduced (PEMET). Initially each encounter may be described by a semiempirical PECT model. Eventually the encounters may be resolved by quantum dynamical calculations of the semiclassical or CAQE (classical approach quantum encounter) type. Simple statistical collision models only distinguish between hits and misses . In reality the energy transfer efficiency exhibits characteristic fall off with increasing impact parameter b. This b-dependence can be explicitly accounted for in the master equation for the reaction rate coefficient.

Place, publisher, year, edition, pages
1997. Vol. 101, p. 574-580
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:du-23350OAI: oai:DiVA.org:du-23350DiVA, id: diva2:1046346
Available from: 2016-11-14 Created: 2016-11-14 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Dynamical theory of collisional energy transfer between reactant and medium molecules
Open this publication in new window or tab >>Dynamical theory of collisional energy transfer between reactant and medium molecules
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Göteborg: Göteborgs universitet, 2001
National Category
Physical Chemistry
Identifiers
urn:nbn:se:du-23355 (URN)91-974011-0-2 (ISBN)
Public defence
(English)
Opponent
Supervisors
Available from: 2016-11-14 Created: 2016-11-14 Last updated: 2016-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Svedung, Harald
In the same journal
Berichte Der Bunsen-Gesellschaft: Physical Chemistry, Chemical Physics
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf