To rapidly develop sustainable energy systems is crucial for the whole society's transition towards sustainability. System efficiency and reduced climate impact are important parts of this. Swedish district heating systems are fairly well developed, mainly based on non-fossil fuels, and includes energy-efficient technologies (such as combined heat and power production and fuel gas condensation). Increased use of district heating is therefore considered as a way to increase energy-efficiency, to phase out fossil energy for heating purposes, and subsequently to a reduction of global CO2 emissions.
The aim of this paper is to study system impact of increased demand of district heating by analysing a collaboration on heat supply between the local energy supplier of Ludvika in Sweden and a nearby mine. The paper analyses economic potential, as well as the potential for more efficient operation of district heating production plants in the local district heating system. The heat demand in the mine is presently supplied from a small-scale biomass-fuelled heat-only boiler located near to the mine. The system consists of two biomass-fuelled heat-only boilers with fuel gas condensers. The consequences of connecting the heat demand of the mine with the municipal district heating system is analyzed using the cost optimization model MODEST.