du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative study of a novel liquid-vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes - Part I: Conceptual development and theoretical analyses
University of Hull; University of Nottingham.ORCID iD: 0000-0002-2369-0169
Show others and affiliations
2015 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 90, 409-426 p.Article in journal (Refereed) Published
Abstract [en]

Aim of the paper is to investigate the thermal performance of a novel liquid–vapour separator incorporated gravity-assisted loop heat pipe (GALHP) (T1), against a conventional GALHP (T2) and a gravitational straight heat pipe (T3), from the conceptual and theoretical aspects. This involved a dedicated conceptual formation, thermo-fluid analyses, and computer modelling and results discussion. The innovative feature of the new GALHP lies in the integration of a dedicated liquid–vapour separator on top of its evaporator section, which removes the potential entrainment between the heat pipe liquid and vapour flows and meanwhile, resolves the inherent ‘dry-out’ problem exhibited in the conventional GALHP. Based on this recognised novelty, a dedicated steady-state thermal model covering the mass continuity, energy conservation and Darcy equations was established. The model was operated at different sets of conditions, thus generating the temperature/pressure contours of the vapour and liquid flows at the evaporator section, the overall thermal resistance, the effective thermal conductivity, and the flow resistances across entire loop. Comparison among these results led to determination of the optimum operational settings of the new GALHP and assessment of the heat-transfer enhancement rate of the new GALHP against the conventional heat pipes. It was suggested that the overall thermal resistance of the three heat pipes (T1, T2, and T3) were 0.10 °C/W, 0.49 °C/W and 0.22 °C/W, while their effective thermal conductivities were 31,365 W/°C m, 9,648 W/°C m and 5,042 W/°C m, respectively. This indicated that the novel heat pipe (T1) could achieve a significantly enhanced heat transport effect, relative to T2 and T3. Compared to a typical cooper rod, T1 has around 78 times higher effective thermal conductivity, indicating that T1 has the tremendous competence compared to other heat transfer components. It should be noted that this paper only reported the theoretical outcomes of the research and the second paper would report the follow-on experimental study and model validation. The research results could be directly used for design, optimisation and analyses of the new GALHP, thus promoting its wide applications in various situations to enable the enhanced thermal performance to be achieved.

Place, publisher, year, edition, pages
2015. Vol. 90, 409-426 p.
Keyword [en]
Gravity; Heat pipe; Composite wick; Heat transfer; Mass; Theoretical model
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:du-24869DOI: 10.1016/j.enconman.2014.11.041ISI: 000348886800039OAI: oai:DiVA.org:du-24869DiVA: diva2:1094456
Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-05-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhang, Xingxing
In the same journal
Energy Conversion and Management
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf