du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative study of a novel liquid-vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes - Part II: Experimental testing and simulation model validation
University of Nottingham; University of Hull.ORCID iD: 0000-0002-2369-0169
Show others and affiliations
2015 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 93, 228-238 p.Article in journal (Refereed) Published
Abstract [en]

Aim of the paper is to report the experimental study of a novel liquid–vapour separator incorporated gravity-assisted loop heat pipe (GALHP) (T1), against the conventional GALHP (T2) and a gravitational straight heat pipe (T3). Based on the results derived from the theoretical analyses and computer modelling, three prototype heat pipes, one for each type, were designed, constructed and tested to characterise their thermal performance under a series of operational conditions. By using the experimental data, the computer simulation model reported in the authors’ previous paper was examined and analysed, indicating that the model could achieve a reasonable accuracy in predicting the thermal performance of the three heat pipes. Under the specifically defined testing condition, T1 has more evenly distributed axial temperature profile than the other two heat pipes (T2 and T3). The start-up timings for T1, T2 and T3 were 410 s, 1400 s and 390 s respectively, indicating that the heat transfer within T2 was affected by the larger evaporator dry-out surface area and restricted evaporation area. The overall thermal resistance of T1 was 0.11 °C/W, which was around 20% and 50% that of T2 and T3. The tested effective thermal conductivity in T1 was 29,968 W/°C m, which was 296% and 648% that of T2 and T3, and 7492% that of a standard copper rod. It is therefore concluded that the novel heat pipe (T1) could achieve a significantly enhanced heat transport effect, relative to T2, T3 and standard cooper rod. The experimental results derived from this research enabled characterisation of the thermal performance of T1, relative to other heat pipes, and validation of the developed computer simulation model derived from the authors’ previous research. These two parts researches in combination will enable design, optimisation and analyse of such a new GALHP, thus promoting its wide application and achieving efficient thermal management.

Place, publisher, year, edition, pages
2015. Vol. 93, 228-238 p.
Keyword [en]
Heat pipe; Start up; Thermal conductivity; Experiment; Model validation
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:du-24868DOI: 10.1016/j.enconman.2015.01.035ISI: 000350711100024OAI: oai:DiVA.org:du-24868DiVA: diva2:1094467
Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-05-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhang, Xingxing
In the same journal
Energy Conversion and Management
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf