du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of Parkinson gait through digital signal processing and machine learning
Dalarna University, School of Technology and Business Studies, Microdata Analysis.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

It would be of both patients’ as well as clinicians’ interest, if diagnosis of Parkinson’s disease (PD) as well as following check-up methods were perfectly sensitive, accurate, reproducible and feasible of objectively classifying motor symptoms of PD. This is an arduous task due to the possible subjectivity of clinical evaluations. In the past decade, attention turns into a multitude of technology based measures (TBMs) to address this need, among which the method of this research is positioned. Author hopes to contribute with a motor assessment method that addresses not only the issue of subjectivity of measurement, but also does not require extensive installments and is easy to use. For this study, data from a clinical trial conducted at Uppsala University Hospital, Sweden in 2015 are used. 7 PD patients and 7 healthy controls each performed 7-13 times each the same motoric gait test, which has been was video recorded. These recordings were showed to clinicians, who rated subjects’ gait and possible dyskinesia on the unified Parkinson's disease rating scale (0-4 rating). Thus the aim of this research was to imitate and automate the tasks of clinicians when diagnosing PD and its symptoms through motoric ratings, using various gait features. These gait features were obtained through quantification of signals from different body parts while patient performs walking motoric test, using image processing. Diagnosis of PD and its symptoms was twofold, as to firstly identify whether the subject has PD and to secondly predict the severity of PD patients symptoms. When classifying subjects into healthy controls and PD patients, classification trees and support vector machines have been deployed, while these achieved 76- 85% accuracy depending on features selected. Following focus was to diagnose severity of PD among patients, while using UPDRS ratings by clinicians as a target variable for supervised learning. Herein, linear regression has been deployed, while average absolute prediction error was 0.25 and correlation of UPDRS ratings with predicted values was 0.84.

Place, publisher, year, edition, pages
2017.
Keywords [en]
Parkinson’s Disease, Technology Based Measures, Signal Processing
National Category
Social Sciences Interdisciplinary
Identifiers
URN: urn:nbn:se:du-25846OAI: oai:DiVA.org:du-25846DiVA, id: diva2:1135413
Available from: 2017-08-23 Created: 2017-08-23 Last updated: 2018-01-13

Open Access in DiVA

fulltext(1306 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 1306 kBChecksum SHA-512
64974c301a8b39713a7c7db2744dbc00386539ce37e423483e6a4ac14e6f8813cc924d2e4ffc33d175b01a3de51ac07029be2e9d0e50300e9f9888004b29074e
Type fulltextMimetype application/pdf

By organisation
Microdata Analysis
Social Sciences Interdisciplinary

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf