Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of surface grinding on corrosion behavior of ferritic stainless steels in boiling magnesium chloride solution
Dalarna University, School of Technology and Business Studies, Materials Technology. KTH.
2018 (English)In: Materials and corrosion - Werkstoffe und Korrosion, ISSN 0947-5117, E-ISSN 1521-4176, Vol. 69, no 11, p. 1560-1571Article in journal (Refereed) Published
Abstract [en]

The influence of grinding operations on surface properties and corrosion behavior of a ferritic stainless steel (FSS), EN 1.4509, has been investigated and limited comparisons also made to the grade EN 1.4622. Surface grinding was performed along the rolling direction of the material. Corrosion tests were conducted in boiling magnesium chloride solution according to ASTM G36; specimens were exposed both without external loading and under four‐point bend loading. The surface topography and cross‐section microstructure before and after exposure were investigated, and residual stresses were measured on selected specimens before and after corrosion tests using X‐ray diffraction. In addition, in situ surface stress measurements were performed to evaluate the actual surface stresses of specimens subject to four‐point bend loading according to ASTM G39. Micro‐pits showing branched morphology initiated from the highly deformed ground surface layer which contained fragmented grains, were observed for all the ground specimens but not those in the as‐delivered condition. Grain boundaries under the surface layer appeared to hinder the corrosion process. No macro‐cracking was found on any specimen after exposure even at high calculated applied loads.

Place, publisher, year, edition, pages
2018. Vol. 69, no 11, p. 1560-1571
Keywords [en]
ferritic stainless steel, grinding, microstructure, pitting, residual stress, stress corrosion cracking
National Category
Materials Engineering
Research subject
Research Profiles 2009-2020, Steel Forming and Surface Engineering
Identifiers
URN: urn:nbn:se:du-28886DOI: 10.1002/maco.201810206ISI: 000451781100006Scopus ID: 2-s2.0-85055888824OAI: oai:DiVA.org:du-28886DiVA, id: diva2:1262458
Note

Export Date: 12 November 2018; Article

Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2021-11-12Bibliographically approved
In thesis
1. Surface integrity and corrosion behavior of stainless steels after grinding operations
Open this publication in new window or tab >>Surface integrity and corrosion behavior of stainless steels after grinding operations
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Stainless steels are widely used in applications where both the mechanical properties of steels and high corrosion resistance are required. There is continuous research to enable stainless steel components to be produced in a more economical way and be used in more harsh environments. A way to achieve this is to correlate the service performance with the production processes.

The central theme of this thesis is surface integrity and corrosion, especially the stress corrosion cracking behavior, after grinding processes. Controlled grinding parameters, including abrasive grit size, machine power and grinding lubricant, were used and the resulting surface properties studied for austenitic 304L and duplex 2304 stainless steels. The abrasive grit size effect was found to have a larger influence. Surface defects, a highly deformed surface layer and the generation of a high level surface tensile residual stresses along the grinding direction were observed as the main types of damage. 

The effect of grinding on stress corrosion cracking behavior of austenitic 304L, ferritic 4509 and duplex 2304 stainless steels in chloride-containing environments was also investigated.  The abrasive grit size effect on corrosion behavior for the three grades was compared. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks on the ground surface for 304L and 2304; for 4509, grinding-induced grain fragmentation was considered as the main factor for the initiation of extensive micro-pits. For duplex 2304, the microstructure and micro-notches in the as-ground surface also had significant influence. Depending on the surface conditions, the actual loading by four-point bending was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. The knowledge obtained from this work can provide guidance for choosing appropriate stainless steel grades and grinding parameters; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 82
Keywords
stainless steel, stress corrosion cracking, surface integrity, grinding, residual stress
National Category
Materials Engineering
Research subject
Research Profiles 2009-2020, Steel Forming and Surface Engineering
Identifiers
urn:nbn:se:du-28894 (URN)978-91-7729-938-7 (ISBN)
Public defence
2018-11-23, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2018-11-14 Created: 2018-11-14 Last updated: 2021-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Zhou, Nian

Search in DiVA

By author/editor
Zhou, Nian
By organisation
Materials Technology
In the same journal
Materials and corrosion - Werkstoffe und Korrosion
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf