du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reuse of Construction Materials
Dalarna University, School of Technology and Business Studies, Energy Technology.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The building and construction sectors are one of the main contributors to the socio-economic development of a country. Globally, these sectors generate around 5% to 10% of national employment and around 5% to 15% of a country's gross domestic product during construction, use and demolition. On the other hand, the sectors consume around 40% of world primary energy, use 30% of raw materials, generate 25% of solid waste, consume 25% of water, and use 12% of land. Furthermore, the sectors account for up to 40% of greenhouse gas (GHG) emissions, mainly from energy use during the life cycle of buildings.

This study aims to assess the potential environmental benefits of reusing concrete and ceramic roof tile within the Swedish context in terms of their CO2 emission. Methodology used was a comparative LCA was to quantify the emissions. In order to calculate LCA, OpenLCA 1.7.0 software was used and to evaluate the emissions, LCIA method selected was ReCiPe, midpoint, Hierarchist model, climate change category expressed in GWP 100 years (in kg CO2eq). The FU of the study was a square meter of roof covering for a period of 40 years with potential to extent up to 80 years. A square meter of concrete roof tile weight 40 kg while ceramic 30 kg.

The environment impact evaluation considered three product system, single use (cradle to grave), single use covering (cradle to user) and single reuse (user to cradle) within 40 years lifespan. In order to compare LCA of the roof tiles, two scenarios were created, Scenario 1 concrete RT in single use and single reuse whilst Scenario 2 evaluates ceramic RT. The outcomes of both scenarios were communicated through a model single family house. Dalarna’s Villa is located in Dalarna region in Sweden and a storage facility Ta Till Våra was to validate the benefits of reused materials.

Comparative LCA revealed that concrete RT in single use released almost 80% more CO2 emissions than ceramic RT and generated 25% more disposable material by weight. The CO2 released by the single use vs. single reuse concrete RT showed higher emissions in the production of the concrete RT than the single reuse, the same occur with ceramic RT. The reuse of the tiles on the same site had an insignificant impact on the environment in both materials. The comparison shows that reuse reduces associated emissions by about 80% in both cases, reusing concrete is more beneficial, as emissions are reduced by 9.95 kg/m2 as opposed to 2.32 kg/m2 at the ceramics. This study reveals the benefit of reusing concrete and ceramic roof tile. In addition, the advantage of building a storage facility to reuse the disposable building materials, reducing the roofing materials ending at the landfill after 40 years. Furthermore, it demonstrated the reduction of CO2 emissions associated with the embodied energy.

Place, publisher, year, edition, pages
2018.
Keywords [en]
Life Cycle Assessment (LCA), Reuse, Environment, Embodied energy, Building materials.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:du-30024OAI: oai:DiVA.org:du-30024DiVA, id: diva2:1315179
Available from: 2019-05-13 Created: 2019-05-13

Open Access in DiVA

fulltext(2790 kB)48 downloads
File information
File name FULLTEXT01.pdfFile size 2790 kBChecksum SHA-512
9871cee495f0ccd6dda5577eee1f6f229f28613818001eea0f9544e6e258783471cd47bc90820aa8e8eb6efe0d6cd38135c26abb497fb3d5b2be5771ec901206
Type fulltextMimetype application/pdf

By organisation
Energy Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 48 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 585 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf