du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level
City University of Hong Kong.
2019 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 174, p. 911-921Article in journal (Refereed) Published
Abstract [en]

Collaborations (e.g. renewable energy sharing) among nearly zero energy buildings can improve performances at cluster level. Demand response control is helpful to enable such collaborations. Existing studies have developed some dynamic pricing demand response control methods to reduce the nearly zero energy building cluster’ electricity bills and eliminate the power grid's undesirable peaks. However, in these controls the collaborations among buildings are not allowed/enabled, since each building interacts with the grid and there is no direct interaction among buildings. Meanwhile, for performance optimizations at building cluster level, the computation costs of these non-collaborative controls are excessively high especially as a number of buildings considered. Therefore, this study proposes a collaborative demand response of nearly zero energy buildings in response to dynamic pricing for cluster-level performance improvements. Considering the building cluster as one ‘lumped’ building, in which the renewable generations, energy demands and battery capacities of individual buildings are aggregated, the collaborative control first identifies the optimal performance at cluster level in response to the dynamic pricing. Then, based on the identified optimal performance, the proposed control coordinates individual buildings' operations using non-linear programming, thereby realizing the collaborations. For validation, the proposed collaborative demand response control is compared with a game-theory based non-collaborative demand response control. The developed control effectively reduces the cluster-level peak energy exchanges and electricity bills by 18% and 45.2%, respectively, with significant computational load reduction. This study will provide the decision makers a computation-efficient demand response control of nearly zero energy buildings which enables full collaborations and thus helps improve the performances.

Place, publisher, year, edition, pages
2019. Vol. 174, p. 911-921
Keywords [en]
Nearly zero energy building, Collaborations, Demand response, Dynamic pricing, Cluster level performance
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:du-30844DOI: 10.1016/j.energy.2019.02.192OAI: oai:DiVA.org:du-30844DiVA, id: diva2:1355739
Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2019-10-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0360544219304025

Authority records BETA

Huang, Pei

Search in DiVA

By author/editor
Huang, Pei
In the same journal
Energy
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf