Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media
Show others and affiliations
2018 (English)In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 27, no 3, p. 512-523Article in journal (Refereed) Published
Abstract [en]

Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

Place, publisher, year, edition, pages
2018. Vol. 27, no 3, p. 512-523
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:du-31394DOI: 10.1007/s11666-017-0678-7OAI: oai:DiVA.org:du-31394DiVA, id: diva2:1381198
Available from: 2019-12-20 Created: 2019-12-20 Last updated: 2019-12-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s11666-017-0678-7

Authority records

Jayamani, Jayaraj

Search in DiVA

By author/editor
Jayamani, Jayaraj
In the same journal
Journal of thermal spray technology (Print)
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf