Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium
Show others and affiliations
2017 (English)In: Intermetallics (Barking), ISSN 0966-9795, E-ISSN 1879-0216, Vol. 89, p. 123-132Article in journal (Refereed) Published
Abstract [en]

Corrosion behavior of TaNbHfZrTi high-entropy alloy (HEA) was investigated in nitric and fluorinated nitric acid at ambient (27 °C) and boiling (120 °C) conditions. The alloy passivated spontaneously during potentiodynamic polarization in 11.5 M HNO3 at ambient condition. The corrosion rate was negligible in boiling 11.5 M HNO3, exposed for 240 h. Scanning electron microscopic (SEM) studies did not show any significant corrosion attack. The high corrosion resistance of TaNbHfZrTi HEA was attributed to its single phase bcc structure. X-ray photoelectron spectroscopic (XPS) analysis revealed that the protective passive film formed in boiling nitric acid was predominantly composed of Ta2O5, in contrast to the presence of ZrO2 and HfO2 in air-formed native film. Potentiodynamic polarization studies indicated a pseudo-passivation behavior of the HEA in 11.5 M HNO3 + 0.05 M NaF at ambient condition. In boiling fluorinated nitric acid, SEM images of TaNbHfZrTi HEA displayed a severely corroded morphology indicating the instability of the metal-oxides of the alloying elements. XPS investigations confirmed the presence of ZrF4, ZrOF2 and HfF4 along with un-protective oxides of Ta, Nb and Ti on the film, resulting in decreased corrosion resistance of TaNbHfZrTi HEA in fluorinated nitric acid.

Place, publisher, year, edition, pages
2017. Vol. 89, p. 123-132
Keywords [en]
A. High-entropy alloys, B. Corrosion, C. Casting, D. Microstructure, F. Scanning electron microscopy, Spectroscopic methods
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:du-31405DOI: 10.1016/j.intermet.2017.06.002OAI: oai:DiVA.org:du-31405DiVA, id: diva2:1381211
Available from: 2019-12-20 Created: 2019-12-20 Last updated: 2019-12-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0966979517302340

Authority records

Jayamani, Jayaraj

Search in DiVA

By author/editor
Jayamani, Jayaraj
In the same journal
Intermetallics (Barking)
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf