du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Power and pacing calculations based on real-time locating data from a cross-country skiing sprint race
KTH, Strukturmekanik.ORCID iD: 0000-0001-5234-6554
KTH, Strukturmekanik.ORCID iD: 0000-0002-5819-4544
2019 (English)In: Sports Biomechanics, ISSN 1476-3141, E-ISSN 1752-6116, Vol. 18, no 2, p. 190-201Article in journal (Refereed) Published
Abstract [en]

Pacing strategies in cross-country skiing have been investigated in several studies. However, none of the previous studies have been verified by collected skiing data giving the skiing velocities along a measured track. These can be used to calculate the propulsive power output. Collected real-time positioning data from a cross-country sprint skiing race were used to estimate the propulsive power by applying a power balance model. Analyses were made for the time-trial and the final for one female and one male skier. The average propulsive power over the whole race times were 311 and 296 W during the time trial and 400 and 386 W during the final, for the female and male skier, respectively. Compared to the average propulsive power over the whole race, the average active propulsive phases were calculated as 33 and 44% higher in the time trials and 36 and 37% higher in the finals for the female and male, respectively. The current study presents a novel approach to use real-time positioning data to estimate continuous propulsive power during cross-country sprint skiing, enabling in-depth analyses of power output and pacing strategies.

Place, publisher, year, edition, pages
Routledge , 2019. Vol. 18, no 2, p. 190-201
Keywords [en]
Pacing strategies, propulsive power, performance analysis
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:du-32276DOI: 10.1080/14763141.2017.1391323ISI: 000466583100006PubMedID: 29141496Scopus ID: 2-s2.0-85034210526OAI: oai:DiVA.org:du-32276DiVA, id: diva2:1414893
Available from: 2019-05-21 Created: 2020-03-16 Last updated: 2020-03-16Bibliographically approved
In thesis
1. Objective Analysis Methods in the Mechanics of Sports
Open this publication in new window or tab >>Objective Analysis Methods in the Mechanics of Sports
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sports engineering can be considered as the bridge between the knowledge of sports science and the principles of engineering and has an important role not only in improving the athletic performance, but also in increasing the safety of the athletes. Testing and optimization of sports equipment and athletic performance are essential for supporting athletes in their quest to reach the podium. However, most of the equipment used by world-class athletes is chosen based only on subjective tests and the athletes’ feelings. Consequently, one of the aims of this thesis was to combine mechanics and mathematics to develop new objective test methods for sports equipment. Another objective was to investigate the possibility to accurately track and analyse cross-country skiing performance by using a real-time locating system. A long term aim is the contribution to increased knowledge about objective test and analysis methods in sports. The main methodological advancements are the modification of established test methods for sports equipment and the implementation of spline-interpolated measured positioning data to evaluate cross-country skiing performance. The first two papers show that it is possible to design objective yet sport specific test methods for different sports equipment. New test devices and methodologies are proposed for alpine ski helmets and cross-country ski poles. The third paper gives suggestions for improved test setups and theoretical simulations are introduced for glide tests of skis. It is shown, it the fourth paper, that data from a real-time locating system in combination with a spline model offers considerable potential for performance analysis in cross-country sprint skiing. In the last paper, for the first time, propulsive power during a cross-country sprint skiing race is estimated by applying a power balance model to spline-interpolated measured positioning data, enabling in-depth analyses of power output and pacing strategies in cross-country skiing. Even though it has not been a first priority aim in this work, the results from the first two papers have been used by manufacturers to design new helmets with increased safety properties and cross-country ski poles with increased force transfer properties. In summary, the results of this thesis demonstrate the feasibility of using mechanics and mathematics to increase the objectiveness and relevance when analysing sports equipment and athletic performance.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. p. 32
Keywords
sports equipment, test methods, sports mechanics, biomechanics, performance analysis, tracking, positioning system, pacing, alpine skiing, cross-country skiing, poles, helmets
National Category
Engineering and Technology
Identifiers
urn:nbn:se:du-32272 (URN)978-91-7729-094-0 (ISBN)
Public defence
2016-10-20, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2020-03-16 Created: 2020-03-16 Last updated: 2020-03-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Swarén, MikaelEriksson, Anders

Search in DiVA

By author/editor
Swarén, MikaelEriksson, Anders
In the same journal
Sports Biomechanics
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf