Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rewards, risks, and reaching the right strategy: Evolutionary paths from heuristics to optimal decisions
Michigan State University, East Lansing, United States.ORCID iD: 0000-0002-4872-1961
2018 (English)In: Evolutionary Behavioral Sciences, ISSN 2330-2925, E-ISSN 2330-2933, Vol. 12, no 3, p. 177-190Article in journal (Refereed) Published
Abstract [en]

Theories of decision-making often posit optimal or heuristic strategies for performing a task. In optimal strategies, information is integrated over time in order to achieve the ideal outcomes; in the heuristic case, some shortcut or simplification is applied in order to make the decision faster or easier. In this article, we use a computational framework to study the evolution of both types of decision strategies in artificial agents. The fitness of these agents is assessed based on their performance on a sequential decision task where they must accurately identify the source of as many incoming information signals as they can over a finite time span. In order to examine what decision strategies evolve as a function of task characteristics, we manipulate the quality of decision information (difficulty) and the magnitude of punishments for incorrect answers. We find that trivial (but optimal) strategies evolve when punishment magnitude is lower than the reward magnitude for correct answers, and optimal information-integrating strategies evolve when either punishment magnitude is low or information quality is high. However, the computational demands of the task become much greater as information quality decreases and punishment magnitudes increase. In these cases, heuristics are used to maintain decision accuracy in spite of the limited cognitive resources agents have available. The results suggest that heuristics are an evolved response to environments with high demands on cognitive resources, where optimal strategies are particularly difficult to achieve. © 2018 American Psychological Association.

Place, publisher, year, edition, pages
American Psychological Association Inc. , 2018. Vol. 12, no 3, p. 177-190
Keywords [en]
Computational evolution, Decision making, Heuristics, Optimality, Payoff structure
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:du-37167DOI: 10.1037/ebs0000115Scopus ID: 2-s2.0-85040944795OAI: oai:DiVA.org:du-37167DiVA, id: diva2:1557911
Available from: 2021-05-27 Created: 2021-05-27 Last updated: 2021-05-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Hintze, Arend

Search in DiVA

By author/editor
Hintze, Arend
In the same journal
Evolutionary Behavioral Sciences
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf