This study examines the collective mathematical reasoning when students and teachers in grades 3, 4, and 5 explore fractions derived from length comparisons, in a task inspired by the ElĀ“konin and Davydov curriculum. The analysis showed that the mathematical reasoning was mainly anchored in mathematical properties related to fractional or algebraic thinking. Further analysis showed that these arguments were characterised by interplay between fractional and algebraic thinking except in the conclusion stage. In the conclusion and the evaluative arguments, these two types of thinking appeared to be intertwined. Another result is the discovery of a new type of argument, identifying arguments, which deals with the first step in task solving. Here, the different types of arguments, including the identifying arguments, were not initiated only by the teachers but also by the students. This in a multilingual classroom with a large proportion of students newly arrived. Compared to earlier research, this study offers a more detailed analysis of algebraic and fractional thinking including possible patterns within the collective mathematical reasoning. An implication of this is that algebraic and fractional thinking appear to be more intertwined than previous suggested.