Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
End of Life Wind Turbine Blade Recycling: Challenges From an Environmental, Economic and Practical Viewpoint
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The goal of the European Union is to make strides towards a circular economy. This means recycling or re-using as much of the material in the economic system as possible. The wind industry faces a great challenge in the years to come as huge quantities of increasingly larger wind turbines reach the end of their service-life. When old wind turbines have been decommissioned, most parts are scrapped and recycled into other applications. The turbineblades however are made from glass- and carbon fibre polymers and are not as easily recycled. Recent bans of putting the blades into landfills steer the industry toward finding new applicationfor the old wind turbine blades. Re-purposing the blades as bridges, shelters, houses and towers has been suggested, as well as re-cycle the material or recover the blades as energy. Regardless of what method is preferred, the wind turbine blades need to be transported to a re-purpose or recycling facility. Because of the distribution of wind turbines within countries, the optimal location of such facilities can be hard to evaluate. The centre-of-gravity method (evaluating the centre-of-mass) has been suggested as a way of evaluating the optimal location of such facilities. The method is built upon the assumption that the wind turbine blade can be easily downsized, transported and accommodated in a single transport. In order to achieve this, the present thesis has compared and evaluated different methods of segmenting the wind turbine blade (mechanical, thermal and chemical) as well as different loading and compressing methods. The mechanical separation methods tend to be more suitable than the thermal and chemical counterparts. The choice of loading methods is dictated by the resulting fraction size of the wind turbine blade after separation. The mass density of the resulting blade could be increased with a suitable way of compression (hydraulic or gravity).

Place, publisher, year, edition, pages
2022.
Keywords [en]
Wind power, Wind turbine, Wind Turbine Blade, Recycling, Glass fibre, Carbon fibre, Centre-of-gravity method
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:du-43672OAI: oai:DiVA.org:du-43672DiVA, id: diva2:1714920
Subject / course
Energy Technology
Available from: 2022-11-30 Created: 2022-11-30

Open Access in DiVA

fulltext(1025 kB)199 downloads
File information
File name FULLTEXT01.pdfFile size 1025 kBChecksum SHA-512
c494dd224339985a25fb5ec8c8ce44c636428ff29ad5fbcf6754d4e2784ea75c00e6449361a0dd55660356852b7bd4c5ce37da7650da75d1970acc67b3de7e40
Type fulltextMimetype application/pdf

Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 199 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 543 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf