Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Implementing SAE Techniques to Predict Global Spectacles Needs
Dalarna University, School of Information and Engineering.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This study delves into the application of Small Area Estimation (SAE) techniques to enhance the accuracy of predicting global needs for assistive spectacles. By leveraging the power of SAE, the research undertakes a comprehensive exploration, employing arange of predictive models including Linear Regression (LR), Empirical Best Linear Unbiased Prediction (EBLUP), hglm (from R package) with Conditional Autoregressive (CAR), and Generalized Linear Mixed Models (GLMM). At last phase,the global spectacle needs’ prediction includes various essential steps such as random effects simulation, coefficient extraction from GLMM estimates, and log-linear modeling. The investigation develops a multi-faceted approach, incorporating area-level modeling, spatial correlation analysis, and relative standard error, to assess their impact on predictive accuracy. The GLMM consistently displays the lowest Relative Standard Error (RSE) values, almost close to zero, indicating precise but potentially overfit results. Conversely, the hglm with CAR model presents a narrower RSE range, typically below 25%, reflecting greater accuracy; however, it is worth noting that it contains a higher number of outliers. LR illustrates a performance similar to EBLUP, with RSE values reaching around 50% in certain scenarios and displaying slight variations across different contexts. These findings underscore the trade-offs between precision and robustness across these models, especially for finer geographical levels and countries not included in the initial sample.

Place, publisher, year, edition, pages
2023.
Keywords [en]
small area estimation, area-level model, empirical best linear unbiased prediction (EBLUP), generalized linear mixed models, Conditional Autoregressive, spatial correlation, spectacle needs, assistive products, auxiliary data, hglm, relative standard error, simulation
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:du-47047OAI: oai:DiVA.org:du-47047DiVA, id: diva2:1800374
Subject / course
Microdata Analysis
Available from: 2023-09-26 Created: 2023-09-26Bibliographically approved

Open Access in DiVA

fulltext(1606 kB)130 downloads
File information
File name FULLTEXT01.pdfFile size 1606 kBChecksum SHA-512
eac616e21ef110d6a0cf9b8947fdacfef4ae66372937763ba8211bfc58def23c6959d4d4e403a7674b146375401b99a580bfc1138f5b49a989e71b711c53e349
Type fulltextMimetype application/pdf

By organisation
School of Information and Engineering
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 130 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 166 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf