Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Uncertainty Analysis: Severe Accident Scenario at a Nordic Nuclear Power Plant
Dalarna University, School of Information and Engineering.
Dalarna University, School of Information and Engineering.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Nuclear Power Plants (NPP) undergo fault and sensitivity analysis with scenario modelling to predict catastrophic events, specifically releases of Cesium 137 (Cs-137). The purpose of this thesis is to find which of 108 input-features from Modular Accident Analysis Program (MAAP)simulation code are important, when there is large release of Cs-137 emissions. The features are tested all together and in their groupings. To find important features, the Machine learning (ML) model Random Forest (RF) has a built-in attribute which identifies important features. The results of RF model classification are corroborated with Support Vector Machines (SVM), K-Nearest Neighbor (KNN) and use k-folds cross validation to improve and validate the results, resulting in a near 90% accuracy for the three ML models. RF is successful at identifying important features related to Cs-137 emissions, by using the classification model to first identify top features, to further train the models at identifying important input-features. The discovered input-features are important both within their individual groups, but also when including all features simultaneously. The large number of features included did not disrupt RF much, but the skewed dataset with few classified extreme events caused the accuracy to be lower at near 90%.

Place, publisher, year, edition, pages
2023.
Keywords [en]
Nuclear power plant, microdata analysis, Random Forest, k-Nearest Neighbor, SVM
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:du-47049OAI: oai:DiVA.org:du-47049DiVA, id: diva2:1800919
Subject / course
Microdata Analysis
Available from: 2023-09-28 Created: 2023-09-28Bibliographically approved

Open Access in DiVA

fulltext(716 kB)41 downloads
File information
File name FULLTEXT01.pdfFile size 716 kBChecksum SHA-512
8933dbfee197d97738fbddac4d4b8fc576d7672e976a999a063b71ddafa67d0132ef5c1c0103d21e1a289c209c694643785d1db198fc80342c109f807e6f1392
Type fulltextMimetype application/pdf

By organisation
School of Information and Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 41 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf