Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
iFRET: An Improved Fluorescence System for DNA Melting Analysis
Dalarna University, School of Health and Social Studies, Medical Science.
2002 (English)In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 12, no 9, p. 1401-1407Article in journal (Refereed) Published
Abstract [en]

Fluorescence resonance energy transfer (FRET) is a powerful tool for detecting spatial relationships between macromolecules, one use of which is the tracking of DNA hybridization status. The process involves measuring changes in fluorescence as FRET donor and acceptor moieties are brought closer together or moved farther apart as a result of DNA hybridization/denaturation. In the present study, we introduce a new version of FRET, which we term induced FRET (iFRET), that is ideally suited for melting curve analysis. The innovation entails using a double-strand, DNA-specific intercalating dye (e.g., SYBR Green I) as the FRET donor, with a conventional FRET acceptor affixed to one of the DNA molecules. The SNP genotyping technique dynamic allele specific hybridization (DASH) was used as a platform to compare iFRET to two alternative fluorescence strategies, namely, the use of the intercalating dye alone and the use of a standard FRET pair (fluorescein as donor, 6-rhodamine as acceptor). The iFRET configuration combines the advantages of intercalating dyes, such as high signal strengths and low cost, with maintaining the specificity and multiplex potential afforded by traditional FRET detection systems. Consequently, iFRET represents a fresh and attractive schema for monitoring interactions between DNA molecules.

Place, publisher, year, edition, pages
2002. Vol. 12, no 9, p. 1401-1407
Identifiers
URN: urn:nbn:se:du-2295OAI: oai:dalea.du.se:2295DiVA, id: diva2:519701
Available from: 2006-09-19 Created: 2006-09-19 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Jobs, Magnus
By organisation
Medical Science
In the same journal
Genome Research

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 704 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf