The possibility to produce near net shape high speed steel components with an adequate microstructure by the combination of starch consolidation (SC) and super solidus liquid phase sintering (SLPS) has been evaluated using a gas atomised M3/2 high speed steel (HSS) powder. Characterisation of the green body and as sintered microstructures using light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) reveals that both the SC and SLPS processes strongly influence the resulting microstructure and thus the properties of the high speed steel material. The results obtained show that the morphology and distribution of starch to a high extent affect the green body surface strength and that the large pores remaining after sintering originates from entrapped air introduced in the fabrication process of the green body. The results illuminate the possibility to combine SC and SLPS to produce HSS components with fully dense microstructures and retained green body geometry from a powder with particle size distribution 50 - 150 mu m.