The attempt to decrease the temperature in solid oxide fuel cells has made it possible to use metallic materials as interconnect, i.e. the part that separates the anode and the cathode in a fuel cell stack. Besides being impermeable to gases the interconnect give good electron conduction between adjacent cells and to the external circuit. Thus, the unavoidable oxide scale must have good electron conductivity and therefore good adhesion to the metal since spalling of the oxide scale from the metal will give rise to higher resistance in the whole oxide scale metal system. Scratch testing is today a common technique in order to characterize the mechanical properties of thin hard coatings on various types of substrate materials. In this test the normal load applied on the scratching stylus is continuously increased while the stylus is moved relative the surface. The critical load, corresponding to a cohesive and/or adhesive coating failure is registered either by a change in the force, the acoustic emission signal or preferable by combining the information from signals with post-test characterisation of the scratch using scanning electron microscopy. The present study evaluates the possibilities to use scratch testing as a method to measure or at least quantitatively classify the adhesion characteristics of different types of oxide scales thermally grown on ferritic stainless interconnect steel. Both uncoated and interconnect steel pre-coated with thin metallic coatings are studied. The results show that all oxide layers investigated display a sufficient cohesive strength and adhesion to the underlying substrate and that the major scratching induced surface failure mechanisms are plastic deformation and cracking, i.e. no brittle like chipping or spalling could be observed.