Metal forming constitutes a group of industrially important processes to form metallic components to net shape. When forming aluminium and other materials that tend to stick to the tools, problems occur. The transferred work material increases the friction, which increases the forming forces. Additionally, the transferred work material becomes hardened and then scratches the softer work material in subsequent forming. This process, known as galling, compromises the surface finish of the next pieces to be formed. This paper employs a newly developed technique to investigate the initial stages of transfer at high resolution in situ in the SEM. We show that the complex microscale processes involved can be distinguished into three classes: primary transfer, secondary transfer and damage activated transfer. The damage activated transfer constitutes a new fundamental tribological phenomenon, involving the activation and healing of a soft metal in sliding contact with a harder surface. Damage activation leads to transfer onto surfaces such as the polished DLC in this investigation, which would otherwise not see any transfer. These processes are important when forming aluminium, but are expected to be of general tribological significance, in sliding involving non-perfect lubricant films, especially for soft metals with protective surface oxides. (C) 2012 Elsevier B.V. All rights reserved.