Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of tool steel microstructure on initial material transfer in metal forming: in situ studies in the SEM
Uppsala Universitet. (Tribomaterial)
Dalarna University, School of Technology and Business Studies, Materials Technology. (Tribologi)
Uppsala Universitet. (Tribomaterial)
2013 (English)In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 302, no 1-2, p. 1249-1256Article in journal (Refereed) Published
Abstract [en]

Metal forming constitutes a group of industrially important processes to form metallic components to net shape. When forming aluminium and other materials that tend to stick to the tools, problems associated with material transfer, e.g. galling, may occur. In a previous study by the present authors, in situ observations of aluminium transfer during sliding contact in the SEM revealed that the surface topography and chemical composition of the tool steel counter surface have a strong impact on the initial material transfer tendency. Even if carefully polished to a very smooth surface (Ra<50 nm), transfer of aluminium was found to immediately take place on a very fine scale and preferentially to the surface irregularities presented by the slightly protruding M(C,N) particles (height 15 nm) in the tool steel. In contrast, the less protruding M6C carbides, as well as the martensitic steel matrix exhibited very little initial transfer. The mechanism behind the preferential pick-up tendency displayed by the M(C,N) particles was not fully understood and it was not possible to determine if the decisive mechanism operates on the microstructural scale, the nanoroughness scale or the chemical bonding scale. In the present study, these mechanisms have been further investigated and analysed by comparing the very initial stages of material transfer onto different types of tool steels in sliding contact with aluminium in the SEM. The tool steels investigated cover conventional ingot cast and powder metallurgy steel grades, selected to possess a range of different types, amounts and sizes of hard phase particles, including MC, M(C,N), M7C3 and M6C. The transfer mechanisms are investigated using high resolution SEM, and the differences between the different microstructures and carbide types are carefully analysed. The implications for real metal forming are discussed.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 302, no 1-2, p. 1249-1256
Keywords [en]
Surface topography; Microstructure; Material transfer; Scanning electron microscopy; In situ studies
National Category
Manufacturing, Surface and Joining Technology
Research subject
Research Profiles 2009-2020, Steel Forming and Surface Engineering
Identifiers
URN: urn:nbn:se:du-11449DOI: 10.1016/j.wear.2013.01.114ISI: 000322682800046Scopus ID: 2-s2.0-84879175300OAI: oai:DiVA.org:du-11449DiVA, id: diva2:576528
Available from: 2012-12-13 Created: 2012-12-13 Last updated: 2021-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Olsson, Mikael
By organisation
Materials Technology
In the same journal
Wear
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 914 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf