This paper introduces a novel approach, Cepstral Separation Difference (CSD), for quantification of speech impairment in Parkinson’s disease (PD). CSD represents a ratio between the magnitudes of glottal (source) and supra-glottal (filter) log-spectrums acquired using the source-filter speech model. The CSD-based features were tested on a database consisting of 240 clinically rated running speech samples acquired from 60 PD patients and 20 healthy controls. The Guttmann (µ2) monotonic correlations between the CSD features and the speech symptom severity ratings were strong (up to 0.78). This correlation increased with the increasing textual difficulty in different speech tests. CSD was compared with some non-CSD speech features (harmonic ratio, harmonic-to-noise ratio and Mel-frequency cepstral coefficients) for speech symptom characterization in terms of consistency and reproducibility. The high intra-class correlation coefficient (>0.9) and analysis of variance indicates that CSD features can be used reliably to distinguish between severity levels of speech impairment. Results motivate the use of CSD in monitoring speech symptoms in PD.