du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxidation of FeCrAl foils at 500-900 degrees C in dry O2 and O2 with 40% H2O
Dalarna University, School of Technology and Business Studies, Materials Technology.
Show others and affiliations
2009 (English)In: Materials at High Temperature, ISSN 0960-3409, Vol. 26, no 2, 199-210 p.Article in journal (Refereed) Published
Abstract [en]

High temperature resistant FeCrAl alloys are frequently used in high temperature applications Such as heating elements and metal based catalytic converter bodies. When exposed to high temperatures an adherent, slowly growing, dense aluminium oxide layer forms on the surface, which protects the underlying alloy from severe degradation. The composition, structure and properties of the formed oxide layer are strongly dependent on the alloy composition, temperature and oxidation environment. In this study, the Sandvik 0C404 FeCrAl alloy, in the form of 50 mu m thick foils, was exposed isothermally in the temperature range 500-900 degrees C for 168 hours in dry O-2 and in O-2 with 40 vol.% H2O. The surface morphology, composition and microstructure of the grown oxide scales were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), grazing incidence X-ray diffraction (GI-XRD), Auger electron spectroscopy (AES), and time of flight secondary ion mass spectrometry (TOF-SIMS). The oxidation process was faster at 900 degrees C than at 500 and 700 degrees C. At 500 degrees C a thin (10-20 nm) mixed oxide of Fe, Cr and Al was formed. Exposure at 700 degrees C resulted ill a similar (40-50 nm) duplex oxide, in both dry O-2 and in O-2 With 40 vol.% H2O. These oxide scales consisted of all inner and an outer relatively pure alumina separated by a Cr-rich band. This type of duplex oxide scale also formed at 900 degrees C with a thin inward growing alpha-Al2O3 at the oxide/metal interface and an outward growing layer outside a Cr-rich band. However, at 900 degrees C the Outward growing layer showed two types of oxide morphologies; a thin smooth base oxide and a much thicker nodular oxide grown on top of substrate ridges. In dry O-2 atmosphere, the main part of this outward growing layer had transformed to alpha-Al2O3. Only in the outer part of the thick oxide nodules, metastable alumina was found. When exposed in the presence of water vapour the main pall of the metastable alumina remained untransformed.

Place, publisher, year, edition, pages
2009. Vol. 26, no 2, 199-210 p.
Keyword [en]
FeCrAl foils, heating elements, oxide layers
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:du-17754DOI: 10.3184/096034009X464311ISI: 000268306100012OAI: oai:DiVA.org:du-17754DiVA: diva2:819254
Available from: 2015-06-10 Created: 2015-06-08 Last updated: 2015-10-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Engkvist, JosefinOlsson, Mikael
By organisation
Materials Technology
In the same journal
Materials at High Temperature
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 402 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf