The influence of microstructure on the mechanical properties of starch consolidated super solidus liquid phase sintered AISI type M3/2 high speed steel powder has been evaluated. Hardness measurements, Rockwell C indentation and scratch testing were used to evaluate the mechanical properties and light optical microscopy and scanning electron microscopy were used for post-test characterisation. The results show that it is possible to starch consolidate and sinter large particle size high speed steel powder to obtain microstructures with high mechanical strength. However, the results show a strong correlation between the as sintered microstructure and the resulting mechanical properties and illuminate the importance of having a dense and isotropic microstructure in order to meet engineering requirements in demanding applications. Consequently, the failure mechanisms observed during indentation and scratch testing can be related to residual pores, present in the low temperature sintered samples, and a coarse microstructure with eutectic carbides, present in the high temperature sintered samples.