du.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems
Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.ORCID iD: 0000-0002-3201-8518
Dalarna University, School of Technology and Business Studies, Energy Technology.
University of Applied Sciences HSR, Switzerland.
Institute of Thermal Engineering, Graz University of Technology.
2016 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 162, 1062-1073 p.Article in journal (Refereed) Published
Abstract [en]

Solar thermal and heat pump combisystems are used to produce domestic hot water (DHW) and space heating (SH) in dwellings. Many systems are available on the market. For an impartial comparison, a definite level of thermal comfort should be defined and ensured in all systems. This work studied the influence of component size on electricity demand for a state of the art solar thermal and heat pump system. A systematic series of parametric studies was carried out by using TRNSYS to show the impact of climate, load and size of main components as well as heat source for the heat pump. Penalty functions were used to ensure that all variations provided the same comfort requirements. Two reference systems were defined and modelled based on products on the market, one with ambient air and the other with borehole as heat source for the heat pump. The results show that changes in collector area from 5 to 15 m2 result in a decrease in system electricity of between 305 and 552 kW h/year. Changes in heat exchanger size for DHW preparation were shown to give nearly as large changes in electricity use due to the fact that the set temperature in the store was changed to give the same thermal comfort in all cases. Decrease in heat pump size was shown to give a decrease in electricity use for the ASHP in the building with larger heat demand while it increased or had only a small change for other boundary conditions. Heat pump losses were shown to be an important factor highlighting the importance of modelling this factor explicitly

Place, publisher, year, edition, pages
2016. Vol. 162, 1062-1073 p.
Keyword [en]
Solar combisystem; Heat pump; Component size; Simulation
National Category
Environmental Engineering
Research subject
Energy, Forests and Built Environments, MacSheep
Identifiers
URN: urn:nbn:se:du-20286DOI: 10.1016/j.apenergy.2015.10.190ISI: 000367631000092OAI: oai:DiVA.org:du-20286DiVA: diva2:873195
Funder
EU, FP7, Seventh Framework Programme
Available from: 2015-11-23 Created: 2015-11-23 Last updated: 2016-01-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Poppi, StefanoBales, Chris
By organisation
Energy Technology
In the same journal
Applied Energy
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 542 hits
ReferencesLink to record
Permanent link

Direct link