The effect of p(H2O) and p(H2) on the oxidation of 304L stainless steel at 600 °C has been investigated in the present study. The samples were analysed by means of X-ray diffraction, Auger spectroscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results showed that at fixed p(H2), the corrosion rate increased considerably with increasing p(H2O). At fixed p(H2O), the corrosion rate decreased slightly with increasing p(H2). Duplex oxide scales formed during the exposure in all environments. The outer and inner layer consisted of Fe3O4 and (Fe, Cr)3O4, respectively. The latter was mainly in the form of internal oxidation. The Cr-rich oxide formation was observed at the initial oxidation process before oxide breakdown. The Auger analysis also suggested the presence of Cr-rich oxide layer just after the breakaway oxidation. The results indicated that the rate-determining step in the corrosion attack is surface controlled or diffusion controlled through an oxide layer with fixed thickness over time.