du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Primary energy use in buildings in a Swedish perspective
Dalarna University, School of Technology and Business Studies, Energy Technology. Mälardalen University.ORCID iD: 0000-0002-3630-663X
Dalarna University, School of Technology and Business Studies, Energy Technology. KTH. (SERC)ORCID iD: 0000-0002-6722-3220
Dalarna University, School of Technology and Business Studies, Construction.ORCID iD: 0000-0002-9943-9878
Mälardalen University.
2016 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 130, 202-209 p.Article in journal (Refereed) Published
Abstract [en]

The building sector accounts for a large part of the energy use in Europe and is a sector where the energy efficiency needs to improve in order to reach the EU energy and climate goals. The energy efficiency goal is set in terms of primary energy even though there are different opinions on how to calculate primary energy. When determining the primary energy use in a building several assumptions are made regarding allocation and the value of different energy sources. In order to analyze the difference in primary energy when different methods are used, this study use 16 combinations of different assumptions to calculate the primary energy use for three simulated heating and ventilations systems in a building. The system with the lowest primary energy use differs depending on the method used. Comparing a system with district heating and mechanical exhaust ventilation with a system with district heating, mechanical exhaust ventilation and exhaust air heat pump, the former has a 40% higher primary energy use in one scenario while the other has a 320% higher in another scenario. This illustrates the difficulty in determining which system makes the largest contribution to fulfilling the EU energy and climate goals.

Place, publisher, year, edition, pages
2016. Vol. 130, 202-209 p.
Keyword [en]
Primary energy; Primary energy factors; Energy efficiency; District heating; Heat pump; Air heat recovery
National Category
Energy Engineering
Research subject
Energy, Forests and Built Environments, Reesbe företagsforskarskola
Identifiers
URN: urn:nbn:se:du-23047DOI: 10.1016/j.enbuild.2016.08.026ISI: 000385323900019OAI: oai:DiVA.org:du-23047DiVA: diva2:966048
Funder
Knowledge Foundation
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2017-08-09Bibliographically approved
In thesis
1. The impact on the energy system of heating demands in buildings: A case study on district heating and electricity for heating in Falun, Sweden
Open this publication in new window or tab >>The impact on the energy system of heating demands in buildings: A case study on district heating and electricity for heating in Falun, Sweden
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Energy efficiency measures in buildings are considered to have great potential in order to reduce total energy consumption, and thus contribute to a reduced environmental impact and a better climate. In Sweden, however, the energy performance requirements for buildings are formulated in terms of bought energy, i.e. as bought electricity and district heating (DH), which does not always reflect the environmental and climate impact from a broader perspective. Focusing on bought energy means that many choose an electricity-based heat pump solution in their building instead of DH, since heat pumps result in a smaller amount of bought energy compared to DH.

The surrounding energy system of the buildings is affected by the choice of energy carriers used for heating. How the energy system is affected is studied in this thesis using two different methods. In the first part, primary energy consumption has been calculated for a simulated building with different heating solutions, representing different electricity and DH demands. In the second part, the impact on total consumption in the surrounding power and DH networks due to different market shares of electricity-based heating and DH has been studied. The second part also includes an analysis of the potential to produce electricity using combined heat and power (CHP) in different scenarios depending on the market share of DH. This part has been carried out as a case study for the Swedish municipality of Falun.

The results show that the choice of energy carrier has a great influence on primary energy consumption. The resulting primary energy consumption does, however, to an even greater extent depend on the calculation method used. Which heating solution, and thus also which energy carrier, gets the lowest primary energy consumption varies in the different methods.

The surrounding power and DH networks are also affected to a great extent by the choice of energy carrier. There is a huge potential to lower peak demand in the power grid by avoiding electricity-based heating. The potential to produce electricity using CHP is also increased with a larger market share for DH. In Falun, reduced electricity demand and increased electricity production using CHP make it possible to cover the peak power demand using only electricity production from CHP. In comparison, 10 % of the peak power demand was covered by electricity from CHP in 2015.

The choice of energy carrier for heating in buildings affects the surrounding energy system to a high degree, and is therefore an important aspect to take into account in both local, national and global energy efficiency projects. 

Place, publisher, year, edition, pages
Västerås: Mälardalen university press, 2017
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 250
National Category
Energy Engineering
Research subject
Energy, Forests and Built Environments
Identifiers
urn:nbn:se:du-23593 (URN)978-91-7485-305-6 (ISBN)
Funder
Knowledge Foundation
Available from: 2016-12-16 Created: 2016-12-15 Last updated: 2016-12-16Bibliographically approved
2. Energy Efficient Renovation Strategies for Swedish and Other European Residential and Office Buildings
Open this publication in new window or tab >>Energy Efficient Renovation Strategies for Swedish and Other European Residential and Office Buildings
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The high energy use in the European building stock is attributable to the large share of old buildings with poor energy performance. Energy renovation of buildings is therefore vital in the work towards energy efficiency and reduced environmental impact in the EU. Yet, the strategies and energy system implications of this work have not been made clear, and the rate of building renovation is currently very low.

The aim of this thesis is to investigate the economic and environmental aspects of energy renovation strategies, with two main objectives:

  • Renovation of Swedish district heated multi-family houses, including life-cycle cost and environmental analysis and impact on the local energy system;

  • Renovation of European residential and office buildings, including life-cycle cost and environmental analysis and influence of climatic conditions.

Buildings typical for the respective regions and the period of construction 1945-1970 were simulated, in order to determine the feasibility and energy saving potential of energy renovation measures in European climates. A variety of systems for heating, cooling and ventilation were studied, as well as solar energy systems, with focus on heat pumps, district heating, low-temperature heating systems and air heat recovery.

Compared to normal building renovation, energy renovation can often reduce the life-cycle costs and environmental impact. In renovation of typical European office buildings, as well as Southern European multi-family houses, more ambitious renovation levels can also be more profitable.

Exhaust air heat pumps can be cost-effective complements in district heated multi-family houses, while ventilation with heat recovery is more expensive but also more likely to reduce the primary energy use. From a system perspective, simple exhaust ventilation can reduce the primary energy use in the district-heating plant as much as an exhaust air heat pump, due to the lower electricity use.

Abstract [sv]

Byggnadssektorn står för omkring 40 % av den totala energianvändningen i EU. Den höga energianvändningen i Europeiska byggnader kan till stor del tillskrivas den stora andelen gamla byggnader med dålig energiprestanda. Energirenovering av byggnader, eller energieffektivisering genom renovering, kan därför anses utgöra en central del i arbetet mot EU:s klimat- och energimål för år 2030. Trots detta är det ännu inte helt klarlagt vilka strategier som ska tillämpas för att uppnå detta och hur det påverkar energisystemet, och i nuläget är renoveringstakten fortfarande väldigt låg.

Målet med denna avhandling är att undersöka ekonomiska och miljömässiga aspekter av strategier för energirenovering, såväl byggnadsskalsåtgärder som aktiva system, för typiska bostads- och kontorsbyggnader i Sverige och i andra Europeiska regioner. Mer specifikt har arbetet följande två inriktningar:

  • Renovering av svenska, fjärrvärmevärmda flerfamiljshus, inklusive livscykelkostnadsanalys och livscykelmiljöanalys samt påverkan på det lokala energisystemet;

  • Renovering av Europeiska bostads- och kontorsbyggnader, inklusive livscykelkostnadsanalys och livscykelmiljöanalys samt påverkan av klimatförutsättningar.

Byggnader typiska för respektive region och byggnadsperioden 1945-1970 modellerades och användes i simuleringar för att fastställa den övergripande möjligheten och energibesparingspotentialen för olika renoveringsåtgärder i Europeiska klimat. En rad system för värme, kyla och ventilation studeras, samt solenergisystem, med fokus på värmepumpar, fjärrvärme, lågtemperaturvärmesystem och värmeåtervinning ur frånluft.

Jämfört med renovering av byggnader utan energieffektiviseringsåtgärder kan energirenovering i många fall minska såväl livscykelkostnaden som miljöpåverkan. Vid renovering av typiska Europeiska kontorsbyggnader lönar det sig mer att renovera ner till ett uppvärmningsbehov på 25 kWh/(m²∙år) än 45 kWh/(m²∙år), då den minskade kostnaden för köpt energi väger upp den ökade kostnaden för isolering. För flerfamiljshus i södra Europa kan mer ambitiösa mål gällande värmebehov också vara lönsamma, medan en mer måttlig nivå är lämplig för småhus.

Solvärme- eller solelsystem kan användas för att minska byggnaders miljöpåverkan. Utan subventioner eller inmatningstariff för överskottsel kan det bli svårt att få lönsamhet i dessa system för kontorsbyggnader i Nord- och Centraleuropa samt för småhus. För flerfamiljshus kan solenergisystem dock sänka den totala livscykelkostnaden, såväl i södra som i norra Europa.

Värmeåtervinning och lågtemperaturvärmesystem visade sig båda ha större inverkan i kallare klimat. Lågtemperaturvärmesystem förbättrar värmefaktorn för värmepumpar, i synnerhet när uppvärmningsbehovet är stort i förhållande till varmvattenbehovet. Vid renovering av byggnader med vattenburna radiatorer kan konvertering till tilluftsradiatorer sänka framledningstemperaturen i värmesystemet.

I svenska flerfamiljshus kan frånluftsvärmepump vara ett kostnadseffektivt komplement till fjärrvärme, medan från- och tilluftsventilation med värmeåtervinning är dyrare men mer sannolikt att ge en minskad primärenergianvändning. I ett systemperspektiv kan frånluftsventilation utan värmeåtervinning minska primärenergianvändningen i fjärrvärmeverket lika mycket som en frånluftsvärmepump, tack vare den lägre elanvändningen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 73 p.
Keyword
Energy efficiency, renovation, low-temperature heating, air heat recovery, district heating, heat pump, Energieffektivitet, renovering, lågtemperaturuppvärmning, värmeåtervinning, fjärrvärme, värmepump
National Category
Energy Engineering Building Technologies Environmental Analysis and Construction Information Technology
Research subject
Energy, Forests and Built Environments
Identifiers
urn:nbn:se:du-25726 (URN)978-91-7729-401-6 (ISBN)
Public defence
2017-06-15, B1, Brinellvägen 23, Stockholm, 13:15 (English)
Opponent
Supervisors
Projects
iNSPiRe
Funder
EU, FP7, Seventh Framework Programme, 314461]
Available from: 2017-08-09 Created: 2017-08-09 Last updated: 2017-08-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Swing Gustafsson, MoaGustafsson, MarcusMyhren, Jonn Are
By organisation
Energy TechnologyConstruction
In the same journal
Energy and Buildings
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 371 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf