This thesis presents a method of measuring the distribution of fiber bonding ability in mechanical pulp furnishes. The method is intended for industrial use, where today only average values are used to describe fiber bonding ability, despite the differences in morphology of the fibers entering the mill. Fiber bonding ability in this paper refers to the mechanical fiber’s flexibility and ability to form large contact areas to other fibers, characteristics required for good paper surfaces and strength.
Five mechanical pulps (Pulps A-E), all produced in different processes from Norway spruce (Picea Abies) were fractionated in hydrocyclones with respect to the fiber bonding ability. Five streams were formed from the hydrocyclone fractionation, Streams 1-5. Each stream plus the feed (Stream 0) was fractionated according to fiber length in a Bauer McNett classifier to compare the fibers at equal fiber lengths (Bauer McNett screens 16, 30, 50, and 100 mesh were used).
Stream 1 was found to have the highest fiber bonding ability, evaluated as tensile strength and apparent density of long fiber laboratory sheets. External fibrillation and collapse resistance index measured in FiberLabTM, an optical measurement device, also showed this result. Stream 5 was found to have the lowest fiber bonding ability, with a consecutively falling scale between Stream 1 and Stream 5. The results from acoustic emission measurements and cross-sectional scanning electron microscopy analysis concluded the same pattern. The amount of fibers in each hydrocyclone stream was also regarded as a measure of the fibers’ bonding ability in each pulp.
The equation for predicted Bonding Indicator (BIN) was calculated by combining, through linear regression, the collapse resistance index and external fibrillation of the P16/R30 fractions for Pulps A and B. Predicted Bonding Indicator was found to correlate well with measured tensile strength. The BIN-equation was then applied also to the data for Pulps C-E, P16/R30, and Pulp A-E, P30/R50, and predicted Bonding Indicator showed good correlations with tensile strength also for these fibers.
From the fiber raw data measured by the FiberLabTM instrument, the BIN-equation was used for each individual fiber. This made it possible to calculate a BIN-distribution of the fibers, that is, a distribution of fiber bonding ability.
The thesis also shows how the BIN-distributions of fibers can be derived from FiberLabTM measurements of the entire pulp without mechanically separating the fibers by length first, for example in a Bauer McNett classifier. This is of great importance, as the method is intended for industrial use, and possibly as an online-method. Hopefully, the BIN-method will become a useful tool for process evaluations and optimizations in the future.