Dalarna University's logo and link to the university's website

du.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bäcke, Linda
    Dalarna University, School of Technology and Business Studies, Material Science.
    Modeling the effect of solute drag on recovery and recrystallization during hot deformation of Nb microalloyed steels2010In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 50, no 2, p. 239-247Article in journal (Refereed)
    Abstract [en]

    The effect of solute drag on recovery and recrystallization during hot deformation of Nb microalloyed steels has been modeled using a newly developed microstructure model. The model is based on dislocation theory and the calculated dislocation density determines the driving force for recrystallization. Subgrains act as nuclei for recrystallization and have to reach a critical size and configuration in order for recrystallization to start. In the model, the solute drag effect of Nb in solution is described. Nb retards both dislocation and grain boundary movement giving retardation in both recovery and recrystallization. Calculations were compared to experimental results from axisymmetric compression tests combined with stress relaxation. In order to model the effect of solute drag, the experiments were carried out at temperatures where precipitation of Nb(C, N) should not occur. The calculated flow stresses for the compression tests show good fit with experimental data. Also, the calculated results of the relaxation tests show good agreement with experimental data.

  • 2. Jansson, Sune
    et al.
    Brabie, Voicu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Josson, Par
    Corrosion mechanism of commercial MgO-C refractories in contact with different gas atmospheres2008In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 48, no 6, p. 760-767Article in journal (Refereed)
    Abstract [en]

    Corrosion of MgO-C refractories in different gas atmospheres consisting of air, Ar, CO or Ar/CO was studied in laboratory experiments. In total, 103 experiments were carried out in the temperature range 1 173 to 1 773 K and for holding times between 2 to 120 min. The reaction rate of the MgO-C material was determined from measurements of the weight loss of the samples. The results showed that the refractory weight loss increased with an increased temperature or an increased holding time. The thermodynamic conditions and the experimental results showed that magnesium gas and carbon monoxide gas should form during ladle refining of steel when the refractory material consists of MgO-C. It was suggested that the reaction rate is directly dependent on the oxygen potential in the ambient atmosphere.

  • 3.
    Kellner, Hans
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology. KTH.
    Karasev, Andrey Vladimirovich
    KTH Royal Inst Technol, S-10044 Stockholm, Sweden..
    Sundqvist, Olle
    Sandvik Mat Technol AB, S-81181 Sandviken, Sweden..
    Jönsson, Pär Göran
    KTH Royal Inst Technol, S-10044 Stockholm, Sweden..
    TiN Particles and Clusters during Ladle Treatments of Ni-based Alloy 825 using Different Stirring Modes2018In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 58, no 2, p. 292-298Article in journal (Refereed)
    Abstract [en]

    Today, titanium is often used in steelmaking not only for deoxidation but also for micro-alloying and alloying for a wide range of steel grades. Therefore, many studies are focused on investigations on the formation and behavior of Ti-containing non-metallic inclusions (such as oxides, nitrides and carbides) during production of different Ti-containing steels and their effect on final steel properties. This study has examined the behavior of TiN clusters and particles in the melt during the ladle treatment of Alloy 825 containing up to 1.2 wt% of Ti. The industrial trials were performed at the end of the ladle treatment by using argon gas in combination with electromagnetic stirring using an upwards or a downwards stirring direction. Metal samples were taken before and after ladle treatment to enable three-dimensional investigations of non-metallic inclusions and clusters. The composition, size and number of particles and clusters were determined after electrolytic extraction of the metal samples by using SEM in combination with EDS. It was found that agglomerations of TiN clusters and particles in the melt are faster during an upwards stirring in comparison to a downwards stirring. However, the removal of clusters from the melt is more effective when using a downwards stirring direction compared to when using an upwards stirring in combination with gas stirring. It was also found that the Turbulent collision is the dominant factor for the agglomeration of TiN particles in the melt.

  • 4.
    Memarpour, Arashk
    et al.
    Dalarna University, School of Technology and Business Studies, Material Science.
    Brabie, Voicu
    Dalarna University, School of Technology and Business Studies, Material Science.
    Jönsson, Pär G.
    The effect of zirconium disilicide (ZrSi2) additions on the carbon oxidation behavior of alumina/graphite refractory materials2010In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 50, no 11, p. 1612-1621Article in journal (Refereed)
    Abstract [en]

    Carbon oxidation is a main industrial problem for Alumina/Graphite Submerged Entry Nozzles (SEN) during pre-heating. Thus, the effect of ZrSi2 antioxidants and the coexistence of antioxidant additive and (4B2O3 •BaO) glass powder on carbon oxidation were investigated at simulated non-isothermal heating conditions in a controlled atmosphere. Also, the effect of ZrSi2 antioxidants on carbon oxidation was investigated at isothermal temperatures at 1473 K and 1773 K. The specimens’ weight loss and temperature were plotted versus time and compared to each others. The thickness of the oxide areas were measured and examined using XRD, FEG-SEM and EDS. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 •BaO) glass powder of the total alumina/Graphite base refractory materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by (4B2O3 •BaO) glaze during green body sintering led to an excellent carbon oxidation resistance.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf